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Short overview

I Proof by Sven Schewe in 2010

I Minimization of deterministic Büchi automata (MIN) is
NP-complete

I Reduction from vertex cover problem to MIN
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DBA
NP-completeness
Vertex cover problem

Deterministic Büchi automata (DBA)

Deterministic Büchi automaton B := (Σ,Q, q0, δ,F ), where

Σ = finite set of symbols

Q = finite set of states

Q+ = Q ∪ {⊥,>}
q0 ∈ Q+ is initial state

δ : Q+ × Σ→ Q+ , δ(⊥, a) = ⊥ ∧ δ(>, a) = >, a ∈ Σ

F ⊆ Q+, finite set of final states.

ρ = q0q1q2 . . . , where i ∈ N0 ∧ qi ∈ Q+, a run.

B accepts exactly those runs in which at least one of the infinitely
often occurring states is in F
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Deterministic Büchi automata (DBA)

Σ∗ is infinite set of finite words.

Contains all possible finite combinations of symbols in Σ

Σω is infinite set of infinite words.

Contains all possible infinite combinations of symbols in Σ
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Deterministic Büchi automata (DBA)

L = {w ∈ Σω|w contains infinitely many a′s}

⇒ Minimal, equivalent, but non-isomorphic
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NP-completeness

By Behnam Esfahbod, CC BY-SA 3.0, https:commons.wikimedia.org/w/index.php?curid=3532181

NP is the set of problems that can be solved in non-deterministic
polynomial time.
A problem H is NP-hard if every problem L ∈ NP can be reduced
in polynomial time to H.
A problem is NP-complete if it belongs to NP and NP-hard.
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Vertex cover problem

Let G = (E ,V ) be an undirected graph.
S ⊆ V is called a vertex cover if
(u, v) ∈ E ⇒ u ∈ S ∨ v ∈ S .

A minimal vertex cover (MCOVER) is a vertex cover of minimal
size.
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Next steps

I Definition ’nice graph’

I Definition characteristic language of nice graph L(Gv0)

I Construction DBA that recognises L(Gv0)
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Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of a nice graph

We call a non-trivial (|V | > 1) simple connected graph
Gv0 = (V ,E ) with a distinguished initial vertex v0 ∈ V nice.

Lemma (1)

The problem of checking whether a nice graph Gv0 has a vertex
cover of size k is NP-complete.

Dejan Kostyszyn Complexity of Büchi automata minimization 10
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Nice graph
Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of the characteristic language of the nice graph

We define the characteristic language L(Gv0) of a nice graph
Gv0 = (V ,E ) as the ω-language over V# = V ] {#}.

# indicates a stop
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Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of the characteristic language of the nice graph

L(Gv0) consists of:

I trace words:
all ω-words of the form v∗0 v

+
1 v+

2 v+
3 v+

4 · · · ∈ V ω with
{vi−1, vi} ∈ E for all i ∈ N

I #-words (’stop’-words):
all words starting with v∗0 v

+
1 v+

2 . . . v+
n #vn ∈ V ∗# with n ∈ N0

and {vi−1, vi} ∈ E for all i ∈ N.

Trace words are in V ω and #-words are in V ω
# \ V ω
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Nice graph
Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of DBA that recognises L(Gv0
)

DBA B = (V ,Q, q0, δ,F ), nice graph Gv0 = (V ,E ).

The states of B are called

I v -state if it can be reached upon an input word
v∗0 v

+
1 v+

2 . . . v+
n ∈ V ∗, with n ∈ N0 and {vi−1, vi} ∈ E for all

i ∈ N, that ends in v = vn.

I v#-state if it can be reached from a v -state upon reading a
# sign.

vertex-states = set of v -states.
#-states = set of v#-states.
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Nice graph
Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of DBA, that recognises L(Gv0
)

Lemma (2)

B has the following properties:

1. The vertex- and #-states of B are disjoint.

Proof.
Let q#

v be a v#-state and q a vertex-state.
As B recognises L(Gv0), B

q#
v

must accept vω, while Bq must reject
it.

trace-words:
v∗0 v

+
1 v+

2 v+
3 v+

4 · · · ∈ V ω
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)
DBA that recognises L(Gv0

)

Definition of DBA, that recognises L(Gv0
)

Lemma (2)

B has the following properties:

1. The vertex- and #-states of B are disjoint.

2. ∀v ,w ∈ V with v 6= w the v -states and w -states are disjoint.

3. ∀v ,w ∈ V with v 6= w the v#-states and w#-states are
disjoint.

4. For each vertex v ∈ V , there is a v#-state.

5. For each vertex v ∈ V , there is a rejecting v -state.

6. For every edge {v ,w} ∈ E , there is an accepting v -state or an
accepting w -state.
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Nice graph
Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of DBA, that recognises L(Gv0
)

6. For every edge {v ,w} ∈ E , there is an accepting v -state or an
accepting w -state.

⇒

The set C of vertices with an accepting vertex-state is a vertex
cover of G = (V ,E ).
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Nice graph
Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of DBA, that recognises L(Gv0
)

Corollary (1)

For a DBA B that recognises the characteristic language of a nice
graph Gv0 = (V ,E ) with initial vertex v0, the set
C = {v ∈ V | there is an accepting v -state} is a vertex cover of
Gv0 , and B has at least 2|V |+ |C | states.
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Overview
Foundations

Definitions & Constructions
Main proof

Nice graph
Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of DBA, that recognises L(Gv0
)

B′ = (V#, (V × {r ,#}) ] (C × {a}), (v0, r), δ, (C × {a}) ] {>}).

I δ((v , r), v ′) = (v ′, a) if {v , v ′} ∈ E and v ′ ∈ C ,
δ((v , r), v ′) = (v ′, r) if {v , v ′} ∈ E and v ′ ∈ C ,
δ((v , r), v ′) = (v , r) if v = v ′,
δ((v , r), v ′) = (v ,#) if v = #,
δ((v , r), v ′) = ⊥ otherwise;

I δ((v , a), v ′) = δ((v , r), v#), and

I δ((v ,#), v) = > and δ((v ,#), v ′) = ⊥ for v# 6= v .
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)

Example of DBA, that recognises L(Gv0
)

δ((v, r), v′) = (v′, a) if {v, v′} ∈ E and
v′ ∈ C ,
δ((v, r), v′) = (v′, r) if {v, v′} ∈ E and
v′ ∈ C ,
δ((v, r), v′) = (v, r) if v = v′,
δ((v, r), v′) = (v,#) if v = #,
δ((v, r), v′) = ⊥ otherwise;
δ((v, a), v′) = δ((v, r), v#),
δ((v,#), v) = > and δ((v,#), v′) = ⊥ for
v# 6= v .
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)
DBA that recognises L(Gv0

)

Definition of DBA, that recognises L(Gv0
)

Lemma (3)

For a nice graph Gv0 = (V ,E ) with initial vertex v0 and vertex
cover C , B′ recognises the characteristic language of Gv0 .
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Nice graph
Characteristic language of nice graph L(Gv0

)
DBA that recognises L(Gv0

)

Definition of DBA, that recognises L(Gv0
)

Corollary (1)

For a DBA B that recognises the characteristic language of a nice
graph Gv0 = (V ,E ) with initial vertex v0, the set
C = {v ∈ V | there is an accepting v -state} is a vertex cover of
Gv0 , and B has at least 2|V |+ |C | states.

Lemma (3)

For a nice graph Gv0 = (V ,E ) with initial vertex v0 and vertex
cover C , B′ recognises the characteristic language of Gv0 .

⇒

Corollary (2)

Let C be a MCOVER of a nice graph Gv0 = (V ,E ). Then B′ is a
minimal DBA that recognises the characteristic language of Gv0 .
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Proof of Theorem

Theorem
The problem of whether there is, for a given DBA, a language
equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP.
For containment in NP, we can simply use non-determinism to
guess such an automaton. Because the equivalence test can be
done in polynomial time, the problem must be in NP.
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Proof of Theorem

Theorem
The problem of whether there is, for a given DBA, a language
equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

Gv = (V ,E )
trivial vertex cover C = V , |V | = m
Construction
B′ has 2|V |+ |C | = 2m + m = 3m states
Question 1: ∃ vertex cover of size k?
Question 2: ∃ DBA B with 2m + k states?

Corollary 2:
If C is MCOVER,
then B is minimal.

⇒ NP-complete
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Overview
Foundations

Definitions & Constructions
Main proof

Proof of Theorem

Proof of Theorem

Theorem
The problem of whether there is, for a given DBA, a language
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Overview
Foundations

Definitions & Constructions
Main proof

Proof of Theorem

Proof of Theorem

Theorem
The problem of whether there is, for a given DBA, a language
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Sources

Thank you for listening!

Schewe, Sven. 2010.
”
Minimisation of Deterministic Parity and

Buchi Automata and Relative Minimisation of Deterministic Finite
Automata“. arXiv:1007.1333 [cs], Juli.
http://arxiv.org/abs/1007.1333.
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