Complexity of Büchi automata minimization

Dejan Kostyszyn

Chair of Software Engineering

February 3, 2018
Short overview

- Proof by Sven Schewe in 2010
Short overview

- Proof by Sven Schewe in 2010
- Minimization of deterministic Büchi automata (MIN) is NP-complete
Short overview

- Proof by Sven Schewe in 2010
- Minimization of deterministic Büchi automata (MIN) is NP-complete
- Reduction from vertex cover problem to MIN
Short overview

- Proof by Sven Schewe in 2010
- Minimization of deterministic Büchi automata (MIN) is NP-complete
- Reduction from vertex cover problem to MIN
Roadmap

- Foundations
Roadmap

- Foundations
 - Deterministic Büchi automata
Roadmap

- Foundations
 - Deterministic Büchi automata
 - NP-completeness
Roadmap

- Foundations
 - Deterministic Büchi automata
 - NP-completeness
 - The vertex cover problem
Roadmap

- Foundations
 - Deterministic Büchi automata
 - NP-completeness
 - The vertex cover problem
- Definitions & Constructions
 - 'Nice graph G_{v_0}'
 - Language of the nice graph $L(G_{v_0})$
 - DBA that recognises $L(G_{v_0})$
Roadmap

- **Foundations**
 - Deterministic Büchi automata
 - NP-completeness
 - The vertex cover problem

- **Definitions & Constructions**
 - 'Nice graph G_{v0}'
 - Language of the nice graph $L(G_{v0})$
 - DBA that recognises $L(G_{v0})$

- **The proof**
Deterministic Büchi automata (DBA)

Deterministic Büchi automaton $\mathcal{B} := (\Sigma, Q, q_0, \delta, F)$, where

Σ = finite set of symbols
Q = finite set of states
$Q_+ = Q \cup \{\bot, \top\}$
$q_0 \in Q_+$ is initial state
$\delta : Q_+ \times \Sigma \rightarrow Q_+$, $\delta(\bot, a) = \bot \land \delta(\top, a) = \top, a \in \Sigma$
$F \subseteq Q_+$, finite set of final states.
Deterministic Büchi automata (DBA)

Deterministic Büchi automaton \(\mathcal{B} := (\Sigma, Q, q_0, \delta, F) \), where

\[\Sigma = \text{finite set of symbols} \]

\[Q = \text{finite set of states} \]

\[Q_+ = Q \cup \{ \perp, \top \} \]

\[q_0 \in Q_+ \text{ is initial state} \]

\[\delta : Q_+ \times \Sigma \rightarrow Q_+ \quad , \quad \delta(\perp, a) = \perp \land \delta(\top, a) = \top, a \in \Sigma \]

\[F \subseteq Q_+, \text{ finite set of final states.} \]

\[\rho = q_0q_1q_2 \ldots, \text{ where } i \in \mathbb{N}_0 \land q_i \in Q_+, \text{ a run.} \]

\(\mathcal{B} \) accepts exactly those runs in which at least one of the infinitely often occurring states is in \(F \).
Deterministic Büchi automata (DBA)

\[\Sigma^* \text{ is infinite set of finite words.} \]

Contains all possible finite combinations of symbols in \(\Sigma \)
Deterministic Büchi automata (DBA)

Σ^* is infinite set of **finite** words.
Contains all possible finite combinations of symbols in Σ

Σ^ω is infinite set of **infinite** words.
Contains all possible infinite combinations of symbols in Σ
Deterministic Büchi automata (DBA)
Deterministic Büchi automata (DBA)

$L = \{ w \in \Sigma^\omega | w \text{ contains infinitely many } a' \text{ 's} \}$
Deterministic Büchi automata (DBA)

\[L = \{ w \in \Sigma^\omega \mid \text{w contains infinitely many } a's \} \]

⇒ Minimal, equivalent, but non-isomorphic
NP-completeness

NP-completeness

NP is the set of problems that can be solved in non-deterministic polynomial time.
NP-completeness

![Diagram showing the relationship between P, NP, and NP-Complete and NP-Hard sets.]

NP is the set of problems that can be solved in non-deterministic polynomial time. A problem H is **NP-hard** if every problem $L \in \text{NP}$ can be reduced in polynomial time to H.

NP is the set of problems that can be solved in non-deterministic polynomial time.
A problem H is **NP-hard** if every problem $L \in \text{NP}$ can be reduced in polynomial time to H.
A problem is **NP-complete** if it belongs to NP and NP-hard.
Vertex cover problem

Let $G = (E, V)$ be an undirected graph. $S \subseteq V$ is called a vertex cover if $(u, v) \in E \Rightarrow u \in S \lor v \in S$.
Vertex cover problem

Let \(G = (E, V) \) be an undirected graph. \(S \subseteq V \) is called a **vertex cover** if \((u, v) \in E \Rightarrow u \in S \lor v \in S\).

A **minimal vertex cover** (MCOVER) is a vertex cover of minimal size.
Vertex cover problem

Let $G = (E, V)$ be an undirected graph. $S \subseteq V$ is called a **vertex cover** if $(u, v) \in E \Rightarrow u \in S \lor v \in S$.

A **minimal vertex cover** (MCOVER) is a vertex cover of minimal size.
Next steps

- Definition 'nice graph'
Next steps

- Definition ‘nice graph’
- Definition characteristic language of nice graph $L(G_{v_0})$
Next steps

- Definition ‘nice graph’
- Definition characteristic language of nice graph $L(G_{v0})$
- Construction DBA that recognises $L(G_{v0})$
Definition of a nice graph

We call a non-trivial (\(|V| > 1\)) simple connected graph \(G_{v_0} = (V, E)\) with a distinguished initial vertex \(v_0 \in V\) nice.

Lemma (1)

The problem of checking whether a nice graph \(G_{v_0}\) has a vertex cover of size \(k\) is NP-complete.
Definition of the characteristic language of the nice graph

We define the characteristic language $L(G_{v_0})$ of a nice graph $G_{v_0} = (V, E)$ as the ω-language over $V\# = V \cup \{\#\}$.

indicates a stop
Definition of the characteristic language of the nice graph

$L(G_{v_0})$ consists of:

- trace words:
 all ω-words of the form $v_0^* v_1^+ v_2^+ v_3^+ \cdots \in V^\omega$ with
 $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$
Definition of the characteristic language of the nice graph

$L(G_{v_0})$ consists of:

- **trace words:**
 all ω-words of the form $v_0^* v_1^+ v_2^+ v_3^+ v_4^+ \cdots \in V^\omega$ with $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$

- **#-words** (’stop’-words):
 all words **starting** with $v_0^* v_1^+ v_2^+ \cdots v_n^+ \# v_n \in V^*$ with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$.
Definition of the characteristic language of the nice graph

$L(G_{v_0})$ consists of:

▶ trace words:
 all ω-words of the form $v_0^* v_1^+ v_2^+ v_3^+ v_4^+ \cdots \in V^\omega$ with
 \[\{v_{i-1}, v_i\} \in E \text{ for all } i \in \mathbb{N} \]

▶ #-words (‘stop’-words):
 all words starting with $v_0^* v_1^+ v_2^+ \cdots v_n^+ \# v_n \in V^# \text{ with } n \in \mathbb{N}_0$
 and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$.

Trace words are in V^ω and #-words are in $V^# \setminus V^\omega$
Definition of DBA that recognises $L(G_{v_0})$

DBA $B = (V, Q, q_0, \delta, F)$, nice graph $G_{v_0} = (V, E)$.
Definition of DBA that recognises $L(G_{v_0})$

DBA $B = (V, Q, q_0, \delta, F)$, nice graph $G_{v_0} = (V, E)$.

The states of B are called

- v-state if it can be reached upon an input word $v_0^* v_1^+ v_2^+ \ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.

- $v#$-state if it can be reached from a v-state upon reading a #$$ sign.

$\text{vertex-states} = \text{set of } v$-states.

$\text{#-states} = \text{set of } v#$-states.
Definition of DBA that recognises $L(G_{v_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{v_0} = (V, E)$.

The states of \mathcal{B} are called

- v-state if it can be reached upon an input word $v_0^*v_1^+v_2^+\ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.

- $v\#$-state if it can be reached from a v-state upon reading a $\#$ sign.
Definition of DBA that recognises \(L(G_{v_0}) \)

DBA \(\mathcal{B} = (V, Q, q_0, \delta, F) \), nice graph \(G_{v_0} = (V, E) \).

The states of \(\mathcal{B} \) are called

- \(v\text{-state} \) if it can be reached upon an input word
 \(v_0^* v_1^+ v_2^+ \ldots v_n^+ \in V^* \), with \(n \in \mathbb{N}_0 \) and \(\{v_{i-1}, v_i\} \in E \) for all \(i \in \mathbb{N} \), that ends in \(v = v_n \).

- \(v\#\text{-state} \) if it can be reached from a \(v\)-state upon reading a \# sign.

\(\text{vertex-states} = \text{set of } v\text{-states} \).
Definition of DBA that recognises $L(G_{v_0})$

DBA $B = (V, Q, q_0, \delta, F)$, nice graph $G_{v_0} = (V, E)$.

The states of B are called

- **v-state** if it can be reached upon an input word $v_0^* v_1^+ v_2^+ \ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.

- **v#$-state** if it can be reached from a v-state upon reading a #$ sign.

$\text{vertex-states} = \text{set of } v\text{-states.}$

$\text{#-states} = \text{set of } v\#$-states.$
Definition of DBA that recognises $L(G_{v_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{v_0} = (V, E)$.

The states of \mathcal{B} are called

- **v-state** if it can be reached upon an input word $v_0^* v_1^+ v_2^+ \ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.

- **$v\#$-state** if it can be reached from a v-state upon reading a $\#$ sign.

$\text{vertex-states} = \text{set of } v\text{-states.}$

$\text{\#-states} = \text{set of } v\#\text{-states.}$
Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

\mathcal{B} has the following properties:

1. The vertex- and $\#$-states of \mathcal{B} are disjoint.
Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

B has the following properties:

1. The vertex- and #-states of B are disjoint.

Proof.

Let $q^\#$ be a $v^\#$-state and q a vertex-state. As B recognises $L(G_{v_0})$, $B_{q^\#}$ must accept v^ω, while B_q must reject it.

trace-words:

$\nu_0^* \nu_1^+ \nu_2^+ \nu_3^+ \nu_4^+ \cdots \in V^\omega$
Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

\mathcal{B} has the following properties:

1. The vertex- and $\#$-states of \mathcal{B} are disjoint.
2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
Definition of DBA, that recognises \(L(G_{v_0}) \)

Lemma (2)

\(\mathcal{B} \) has the following properties:

1. The vertex- and \#-states of \(\mathcal{B} \) are disjoint.
2. \(\forall v, w \in V \text{ with } v \neq w \text{ the } v\text{-states and } w\text{-states are disjoint.} \)
3. \(\forall v, w \in V \text{ with } v \neq w \text{ the } v\#\text{-states and } w\#\text{-states are disjoint.} \)
Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

B has the following properties:

1. The vertex- and $\#$-states of B are disjoint.
2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
3. $\forall v, w \in V$ with $v \neq w$ the $v\#$-states and $w\#$-states are disjoint.
4. For each vertex $v \in V$, there is a $v\#$-state.
Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

B has the following properties:

1. The vertex- and $\#$-states of B are disjoint.
2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
3. $\forall v, w \in V$ with $v \neq w$ the $v\#$-states and $w\#$-states are disjoint.
4. For each vertex $v \in V$, there is a $v\#$-state.
5. For each vertex $v \in V$, there is a rejecting v-state.
Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

B has the following properties:

1. The vertex- and $\#$-states of B are disjoint.
2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
3. $\forall v, w \in V$ with $v \neq w$ the $v\#$-states and $w\#$-states are disjoint.
4. For each vertex $v \in V$, there is a $v\#$-state.
5. For each vertex $v \in V$, there is a rejecting v-state.
6. For every edge $\{v, w\} \in E$, there is an accepting v-state or an accepting w-state.
Definition of DBA, that recognises $L(G_{v_0})$

6. For every edge $\{v, w\} \in E$, there is an accepting v-state or an accepting w-state.

\Rightarrow

The set C of vertices with an accepting vertex-state is a **vertex cover** of $G = (V, E)$.
Definition of DBA, that recognises $L(G_{v_0})$

Corollary (1)

For a DBA B that recognises the characteristic language of a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0, the set $C = \{ v \in V \mid \text{there is an accepting } v\text{-state} \}$ is a vertex cover of G_{v_0}, and B has at least $2|V| + |C|$ states.
Definition of DBA, that recognises $L(G_{v_0})$

$$\mathcal{B}' = (V\#,(V \times \{r,\#\}) \uplus (C \times \{a\}),(v_0,r),\delta,(C \times \{a\}) \uplus \{\top\}).$$

- $\delta((v,r),v') = (v',a)$ if $\{v,v'\} \in E$ and $v' \in C$,
- $\delta((v,r),v') = (v',r)$ if $\{v,v'\} \in E$ and $v' \in C$,
- $\delta((v,r),v') = (v,r)$ if $v = v'$,
- $\delta((v,r),v') = (v,\#)$ if $v = \#$,
- $\delta((v,r),v') = \bot$ otherwise;

- $\delta((v,a),v') = \delta((v,r),v\#)$, and

- $\delta((v,\#),v) = \top$ and $\delta((v,\#),v') = \bot$ for $v\# \neq v$.
δ((v, r), v′) = (v′, a) if \{v, v′\} ∈ E and v′ ∈ C,
δ((v, r), v′) = (v′, r) if \{v, v′\} ∈ E and v′ ∈ C,
δ((v, r), v′) = (v, r) if v = v′,
δ((v, a), v′) = δ((v, r), v#),
δ((v, #), v) = ⊤ and δ((v, #), v′) = ⊥ for v# ≠ v.
Definition of DBA, that recognises $L(G_{v_0})$

Lemma (3)

For a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0 and vertex cover C, B' recognises the characteristic language of G_{v_0}.
Definition of DBA, that recognises $L(G_{v_0})$

Corollary (1)

For a DBA \mathcal{B} that recognises the characteristic language of a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0, the set $C = \{v \in V | \text{there is an accepting } v\text{-state}\}$ is a vertex cover of G_{v_0}, and \mathcal{B} has at least $2|V| + |C|$ states.

Lemma (3)

For a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0 and vertex cover C, \mathcal{B}' recognises the characteristic language of G_{v_0}.

\Rightarrow

Corollary (2)

Let C be a MCOVER of a nice graph $G_{v_0} = (V, E)$. Then \mathcal{B}' is a minimal DBA that recognises the characteristic language of G_{v_0}.
Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.
Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP.

For containment in NP, we can simply use non-determinism to guess such an automaton. Because the equivalence test can be done in polynomial time, the problem must be in NP. □
Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.
Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

$G_v = (V, E)$
Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

$G_v = (V, E)$

trivial vertex cover $C = V, |V| = m$
Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

$G_v = (V, E)$
trivial vertex cover $C = V, |V| = m$

Construction

B' has $2|V| + |C| = 2m + m = 3m$ states
Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

$G_V = (V, E)$

trivial vertex cover $C = V, |V| = m$

Construction

B' has $2|V| + |C| = 2m + m = 3m$ states

Question 1: \exists vertex cover of size k?
Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

$G_v = (V, E)$
trivial vertex cover $C = V, |V| = m$

Construction

B' has $2|V| + |C| = 2m + m = 3m$ states

Question 1: \exists vertex cover of size k?

Question 2: \exists DBA B with $2m + k$ states?
Proof of Theorem

Theorem
The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

$G_v = (V, E)$
trivial vertex cover $C = V, |V| = m$

Construction
B' has $2|V| + |C| = 2m + m = 3m$ states

Question 1: \exists vertex cover of size k?
Question 2: \exists DBA B with $2m + k$ states?

Corollary 2:
If C is MCOVER, then B is minimal.
The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

$G_v = (V, E)$

trivial vertex cover $C = V, |V| = m$

Construction

B' has $2|V| + |C| = 2m + m = 3m$ states

Question 1: \exists vertex cover of size k?

Question 2: \exists DBA B with $2m + k$ states?

Corollary 2:

If C is MCOVER, then B is minimal.

\Rightarrow NP-complete
Sources

Thank you for listening!