Complexity of Büchi automata minimization

Dejan Kostyszyn

Chair of Software Engineering

February 3, 2018

Overview & Theorem Roadmap

Short overview

Proof by Sven Schewe in 2010

Short overview

- Proof by Sven Schewe in 2010
- Minimization of deterministic Büchi automata (MIN) is NP-complete

Overview & Theorem

Short overview

- Proof by Sven Schewe in 2010
- Minimization of deterministic Büchi automata (MIN) is NP-complete
- Reduction from vertex cover problem to MIN

Overview & Theorem

Short overview

- Proof by Sven Schewe in 2010
- Minimization of deterministic Büchi automata (MIN) is NP-complete
- Reduction from vertex cover problem to MIN

Overview & Theorem

Overview

Definitions & Constructions

Overview & Theorem Roadmap

Roadmap

Overview & Theorem Roadmap

Roadmap

Foundations

Deterministic Büchi automata

Overview

Overview & Theorem Roadmap

Roadmap

Foundations

- Deterministic Büchi automata
- NP-completeness

Overview

Overview & Theorem Roadmap

Roadmap

Foundations

- Deterministic Büchi automata
- NP-completeness
- The vertex cover problem

Overview Foundations

Main proof

Overview & Theorem Roadmap

Roadmap

- Foundations
 - Deterministic Büchi automata

Definitions & Constructions

- NP-completeness
- The vertex cover problem
- Definitions & Constructions
 - 'Nice graph G_{v0}'
 - Language of the nice graph $L(G_{v_0})$
 - DBA that recognises L(G_{v0})

Overview Foundations

Main proof

Overview & Theorem Roadmap

Roadmap

- Foundations
 - Deterministic Büchi automata

Definitions & Constructions

- NP-completeness
- The vertex cover problem
- Definitions & Constructions
 - 'Nice graph G_{v0}'
 - Language of the nice graph $L(G_{v_0})$
 - DBA that recognises $L(G_{v_0})$
- The proof

DBA NP-completeness Vertex cover problem

Deterministic Büchi automata (DBA)

Deterministic Büchi automaton $\mathcal{B} := (\Sigma, Q, q_0, \delta, F)$, where

$$\begin{split} \Sigma &= \text{finite set of symbols} \\ Q &= \text{finite set of states} \\ Q_+ &= Q \cup \{\bot, \top\} \\ q_0 \in Q_+ \text{ is initial state} \\ \delta : Q_+ \times \Sigma \to Q_+ \quad , \delta(\bot, a) = \bot \wedge \delta(\top, a) = \top, a \in \Sigma \\ F \subseteq Q_+, \text{ finite set of final states.} \end{split}$$

DBA NP-completeness Vertex cover problem

Deterministic Büchi automata (DBA)

Deterministic Büchi automaton $\mathcal{B} := (\Sigma, Q, q_0, \delta, F)$, where

$$\begin{split} \Sigma &= \text{finite set of symbols} \\ Q &= \text{finite set of states} \\ Q_+ &= Q \cup \{\bot, \top\} \\ q_0 \in Q_+ \text{ is initial state} \\ \delta : Q_+ \times \Sigma \to Q_+ \quad, \delta(\bot, a) = \bot \wedge \delta(\top, a) = \top, a \in \Sigma \\ F \subseteq Q_+, \text{ finite set of final states.} \end{split}$$

 $\rho = q_0 q_1 q_2 \dots$, where $i \in \mathbb{N}_0 \land q_i \in Q_+$, a run.

 \mathcal{B} accepts exactly those runs in which at least one of the infinitely often occurring states is in F

DBA NP-completeness Vertex cover problem

Deterministic Büchi automata (DBA)

 Σ^* is infinite set of **finite** words.

Contains all possible finite combinations of symbols in $\boldsymbol{\Sigma}$

DBA NP-completeness Vertex cover problem

Deterministic Büchi automata (DBA)

 Σ^* is infinite set of **finite** words.

Contains all possible finite combinations of symbols in $\boldsymbol{\Sigma}$

 Σ^{ω} is infinite set of **infinite** words.

Contains all possible infinite combinations of symbols in Σ

DBA NP-completeness Vertex cover problem

Deterministic Büchi automata (DBA)

DBA NP-completeness Vertex cover problem

Deterministic Büchi automata (DBA)

DBA NP-completeness Vertex cover problem

Deterministic Büchi automata (DBA)

\Rightarrow Minimal, equivalent, but non-isomorphic

Overview DBA Foundations NP-completeness Definitions & Constructions Main proof

NP-completeness

By Behnam Esfahbod, CC BY-SA 3.0, https://wikimedia.org/w/index.php?curid=3532181

By Behnam Esfahbod, CC BY-SA 3.0, https://wikimedia.org/w/index.php?curid=3532181

NP is the set of problems that can be solved in non-deterministic polynomial time.

By Behnam Esfahbod, CC BY-SA 3.0, https://wikimedia.org/w/index.php?curid=3532181

NP is the set of problems that can be solved in non-deterministic polynomial time.

A problem *H* is **NP-hard** if every problem $L \in NP$ can be reduced in polynomial time to *H*.

By Behnam Esfahbod, CC BY-SA 3.0, https:commons.wikimedia.org/w/index.php?curid=3532181

 ${\bf NP}$ is the set of problems that can be solved in non-deterministic polynomial time.

A problem *H* is **NP-hard** if every problem $L \in NP$ can be reduced in polynomial time to *H*.

A problem is **NP-complete** if it belongs to NP and NP-hard.

DBA NP-completeness Vertex cover problem

Vertex cover problem

Let G = (E, V) be an undirected graph. $S \subseteq V$ is called a **vertex cover** if $(u, v) \in E \Rightarrow u \in S \lor v \in S$. Definitions & Constructions Main proof DBA NP-completeness Vertex cover problem

Vertex cover problem

Let G = (E, V) be an undirected graph. $S \subseteq V$ is called a **vertex cover** if $(u, v) \in E \Rightarrow u \in S \lor v \in S$.

A **minimal vertex cover** (MCOVER) is a vertex cover of minimal size.

Definitions & Constructions Main proof DBA NP-completeness Vertex cover problem

Vertex cover problem

Let G = (E, V) be an undirected graph. $S \subseteq V$ is called a **vertex cover** if $(u, v) \in E \Rightarrow u \in S \lor v \in S$.

A **minimal vertex cover** (MCOVER) is a vertex cover of minimal size.

Next steps

Definition 'nice graph'

 $\begin{array}{c|c} & \text{Overview} \\ \hline & \text{Foundations} \end{array} & \text{Nice graph} \\ \hline & \text{Definitions} \& \text{Constructions} \\ & \text{Main proof} \end{array} & \text{DBA that recognises } L(G_{v_0}) \end{array}$

Next steps

- Definition 'nice graph'
- Definition characteristic language of nice graph $L(G_{v_0})$

 $\begin{array}{c|c} & \text{Overview} & \text{Nice graph} \\ \hline & \text{Foundations} & \text{Characteristic language of nice graph } L(G_{v_0}) \\ \hline & \text{Definitions \& Constructions} & \text{DBA that recognises } L(G_{v_0}) \\ \hline & \text{Main proof} \end{array}$

Next steps

- Definition 'nice graph'
- Definition characteristic language of nice graph $L(G_{\nu_0})$
- Construction DBA that recognises $L(G_{\nu_0})$

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of a nice graph

We call a non-trivial (|V| > 1) simple connected graph $G_{v_0} = (V, E)$ with a distinguished initial vertex $v_0 \in V$ nice.

Lemma (1)

The problem of checking whether a nice graph G_{v_0} has a **vertex** cover of size k is NP-complete.

Definition of the characteristic language of the nice graph

We define the *characteristic language* $L(G_{v_0})$ of a nice graph $G_{v_0} = (V, E)$ as the ω -language over $V_{\#} = V \uplus \{\#\}$.

indicates a stop

Definition of the characteristic language of the nice graph

 $L(G_{v_0})$ consists of:

trace words:

all ω -words of the form $v_0^* v_1^+ v_2^+ v_3^+ v_4^+ \cdots \in V^{\omega}$ with $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$

Definition of the characteristic language of the nice graph

 $L(G_{v_0})$ consists of:

- trace words:
 - all ω -words of the form $v_0^* v_1^+ v_2^+ v_3^+ v_4^+ \cdots \in V^{\omega}$ with $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$
- ▶ #-words ('stop'-words): all words **starting** with $v_0^*v_1^+v_2^+ \dots v_n^+ \# v_n \in V_\#^*$ with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$.

Overview Nice graph Characteristic language of nice graph $L(G_{v_0})$ Definitions & Constructions Main proof

Definition of the characteristic language of the nice graph

 $L(G_{v_0})$ consists of:

- trace words:
 - all ω -words of the form $v_0^* v_1^+ v_2^+ v_3^+ v_4^+ \cdots \in V^{\omega}$ with $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$
- ▶ #-words ('stop'-words): all words **starting** with $v_0^*v_1^+v_2^+ \dots v_n^+ \# v_n \in V_\#^*$ with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$.

Trace words are in V^ω and #-words are in $V^\omega_\#\setminus V^\omega$

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA that recognises $L(G_{\nu_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{\nu_0} = (V, E)$.

Definition of DBA that recognises $L(G_{\nu_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{\nu_0} = (V, E)$.

The states of \mathcal{B} are called

▶ *v*-state if it can be reached upon an input word $v_0^*v_1^+v_2^+ \ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.

Definition of DBA that recognises $L(G_{\nu_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{v_0} = (V, E)$.

The states of \mathcal{B} are called

- ▶ *v*-state if it can be reached upon an input word $v_0^* v_1^+ v_2^+ \dots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.
- v#-state if it can be reached from a v-state upon reading a # sign.

Definition of DBA that recognises $L(G_{\nu_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{\nu_0} = (V, E)$.

The states of $\mathcal B$ are called

- ▶ *v*-state if it can be reached upon an input word $v_0^*v_1^+v_2^+ \ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.
- v#-state if it can be reached from a v-state upon reading a # sign.

vertex-states = set of *v*-states.

Definition of DBA that recognises $L(G_{\nu_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{\nu_0} = (V, E)$.

The states of \mathcal{B} are called

- ▶ *v*-state if it can be reached upon an input word $v_0^*v_1^+v_2^+ \ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.
- v#-state if it can be reached from a v-state upon reading a # sign.

vertex-states = set of v-states. #-states = set of v#-states. $\begin{array}{c|c} & \text{Overview} & \text{Nice graph} \\ \hline \text{Foundations} & \text{Characteristic language of nice graph } L(G_{v_0}) \\ \hline \text{Definitions \& Constructions} & \text{DBA that recognises } L(G_{v_0}) \\ \hline \end{array}$

Definition of DBA that recognises $L(G_{\nu_0})$

DBA $\mathcal{B} = (V, Q, q_0, \delta, F)$, nice graph $G_{\nu_0} = (V, E)$.

The states of \mathcal{B} are called

- ▶ *v*-state if it can be reached upon an input word $v_0^*v_1^+v_2^+ \ldots v_n^+ \in V^*$, with $n \in \mathbb{N}_0$ and $\{v_{i-1}, v_i\} \in E$ for all $i \in \mathbb{N}$, that ends in $v = v_n$.
- v#-state if it can be reached from a v-state upon reading a # sign.

vertex-states = set of v-states. #-states = set of v#-states.

Overview Nice graph Foundations Characterist Definitions & Constructions DBA that m Main proof

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{\nu_0})$

Lemma (2)

 ${\mathcal B}$ has the following properties:

1. The vertex- and #-states of \mathcal{B} are disjoint.

Definition of DBA, that recognises $L(G_{\nu_0})$

Lemma (2)

 ${\cal B}$ has the following properties:

1. The vertex- and #-states of \mathcal{B} are disjoint.

Proof. Let $q_v^{\#}$ be a $v_{\#}$ -state and q a vertex-state. As \mathcal{B} recognises $L(G_{v_0})$, $\mathcal{B}_{q_v^{\#}}$ must accept v^{ω} , while \mathcal{B}_q must reject it.

trace-words: $v_0^* v_1^+ v_2^+ v_3^+ v_4^+ \dots \in V^{\omega}$

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

- 1. The vertex- and #-states of \mathcal{B} are disjoint.
- 2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

- 1. The vertex- and #-states of \mathcal{B} are disjoint.
- 2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
- 3. $\forall v, w \in V$ with $v \neq w$ the v#-states and w#-states are disjoint.

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{\nu_0})$

Lemma (2)

- 1. The vertex- and #-states of \mathcal{B} are disjoint.
- 2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
- 3. $\forall v, w \in V$ with $v \neq w$ the v#-states and w#-states are disjoint.
- 4. For each vertex $v \in V$, there is a v#-state.

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{\nu_0})$

Lemma (2)

- 1. The vertex- and #-states of \mathcal{B} are disjoint.
- 2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
- 3. $\forall v, w \in V$ with $v \neq w$ the v#-states and w#-states are disjoint.
- 4. For each vertex $v \in V$, there is a v#-state.
- 5. For each vertex $v \in V$, there is a rejecting v-state.

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{v_0})$

Lemma (2)

- 1. The vertex- and #-states of \mathcal{B} are disjoint.
- 2. $\forall v, w \in V$ with $v \neq w$ the v-states and w-states are disjoint.
- 3. $\forall v, w \in V$ with $v \neq w$ the v#-states and w#-states are disjoint.
- 4. For each vertex $v \in V$, there is a v#-state.
- 5. For each vertex $v \in V$, there is a rejecting v-state.
- For every edge {v, w} ∈ E, there is an accepting v-state or an accepting w-state.

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{v_0})$

For every edge {v, w} ∈ E, there is an accepting v-state or an accepting w-state.

 \Rightarrow

The set C of vertices with an accepting vertex-state is a **vertex** cover of G = (V, E).

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{v_0})$

Corollary (1)

For a DBA \mathcal{B} that recognises the characteristic language of a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0 , the set $C = \{v \in V | \text{ there is an accepting } v\text{-state}\}$ is a **vertex cover** of G_{v_0} , and \mathcal{B} has at least 2|V| + |C| states.

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{\nu_0})$

$$\begin{aligned} \mathcal{B}' &= (V_{\#}, (V \times \{r, \#\}) \uplus (C \times \{a\}), (v_0, r), \delta, (C \times \{a\}) \uplus \{\top\}). \\ & \bullet \, \delta((v, r), v') = (v', a) \text{ if } \{v, v'\} \in E \text{ and } v' \in C, \\ & \delta((v, r), v') = (v', r) \text{ if } \{v, v'\} \in E \text{ and } v' \in C, \\ & \delta((v, r), v') = (v, r) \text{ if } v = v', \\ & \delta((v, r), v') = (v, \#) \text{ if } v = \#, \\ & \delta((v, r), v') = \bot \text{ otherwise;} \end{aligned}$$
$$\begin{aligned} & \bullet \, \delta((v, a), v') &= \Delta((v, r), v\#), \text{ and} \\ & \bullet \, \delta((v, \#), v) = \top \text{ and } \delta((v, \#), v') = \bot \text{ for } v\# \neq v. \end{aligned}$$

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Example of DBA, that recognises $L(G_{\nu_0})$

 $\begin{array}{l} \delta((v,r),v') = (v',a) \text{ if } \{v,v'\} \in E \text{ and } \\ v' \in C, \\ \delta((v,r),v') = (v',r) \text{ if } \{v,v'\} \in E \text{ and } \\ v' \in C, \\ \delta((v,r),v') = (v,r) \text{ if } v = v', \\ \delta((v,r),v') = (v,\#) \text{ if } v = \#, \\ \delta((v,r),v') = \bot \text{ otherwise; } \\ \delta((v,a),v') = \delta((v,r),v\#), \\ \delta((v,\#),v) = \top \text{ and } \delta((v,\#),v') = \bot \text{ for } \\ v\# \neq v. \end{array}$

Nice graph Characteristic language of nice graph $L(G_{v_0})$ DBA that recognises $L(G_{v_0})$

Definition of DBA, that recognises $L(G_{\nu_0})$

Lemma (3) For a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0 and vertex cover C, \mathcal{B}' recognises the characteristic language of G_{v_0} .

Definition of DBA, that recognises $L(G_{v_0})$

Corollary (1)

For a DBA \mathcal{B} that recognises the characteristic language of a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0 , the set $C = \{v \in V | \text{ there is an accepting } v\text{-state}\}$ is a **vertex cover** of G_{v_0} , and \mathcal{B} has at least 2|V| + |C| states.

Lemma (3)

For a nice graph $G_{v_0} = (V, E)$ with initial vertex v_0 and vertex cover C, \mathcal{B}' recognises the characteristic language of G_{v_0} .

Corollary (2)

Let C be a MCOVER of a nice graph $G_{v_0} = (V, E)$. Then \mathcal{B}' is a minimal DBA that recognises the characteristic language of G_{v_0} .

 \Rightarrow

Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP.

For containment in NP, we can simply use non-determinism to guess such an automaton. Because the equivalence test can be done in polynomial time, the problem must be in NP.

Proof of Theorem

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

 $G_v=(V,E)$

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

 $G_v = (V, E)$ trivial vertex cover C = V, |V| = m

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

 $\begin{aligned} G_{v} &= (V, E) \\ \text{trivial vertex cover } C &= V, |V| = m \\ \text{Construction} \\ \mathcal{B}' \text{ has } 2|V| + |C| = 2m + m = 3m \text{ states} \end{aligned}$

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

 $G_v = (V, E)$ trivial vertex cover C = V, |V| = mConstruction \mathcal{B}' has 2|V| + |C| = 2m + m = 3m states Question 1: \exists vertex cover of size k?

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

 $G_v = (V, E)$ trivial vertex cover C = V, |V| = mConstruction \mathcal{B}' has 2|V| + |C| = 2m + m = 3m states Question 1: \exists vertex cover of size k? Question 2: \exists DBA \mathcal{B} with 2m + k states?

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

 $G_v = (V, E)$ trivial vertex cover C = V, |V| = mConstruction \mathcal{B}' has 2|V| + |C| = 2m + m = 3m states Question 1: \exists vertex cover of size k? Question 2: \exists DBA \mathcal{B} with 2m + k states?

Corollary 2: If C is MCOVER, then \mathcal{B} is minimal.

Theorem

The problem of whether there is, for a given DBA, a language equivalent Büchi automaton with at most k states is NP-complete.

Proof: Containment in NP-hard.

 $G_v = (V, E)$ trivial vertex cover C = V, |V| = mConstruction \mathcal{B}' has 2|V| + |C| = 2m + m = 3m states Question 1: \exists vertex cover of size k? Question 2: \exists DBA \mathcal{B} with 2m + k states?

Corollary 2: If *C* is MCOVER, then \mathcal{B} is minimal.

 \Rightarrow NP-complete

Thank you for listening!

Proof of Theorem

Schewe, Sven. 2010. "Minimisation of Deterministic Parity and Buchi Automata and Relative Minimisation of Deterministic Finite Automata". arXiv:1007.1333 [cs], Juli. http://arxiv.org/abs/1007.1333.