## Petri Nets

Albert-Ludwigs-Universität Freiburg

January 27, 2018

Proseminar Talk Petri Nets

# Introduction

- Concurrent computing: several computations are executed concurrently and not sequentially.
- Many dependencies can exist in the system.
- A model is required to investigate these systems.
- DFA and NFA can grow very big.

## Example for problem of concurrent computing

An example for a problem of concurrent computing is a shared resource:

- One resource is shared by several processes.
- Only one process should access the resource at the same time.
- Solution: mutex lock

# Definitions

#### Definition

A Petri Net N consists of a tuple N = (P, T, F) where

- P is a finite, nonempty set of places
- ► *T* is a finite, nonempty set of *transitions*
- $F \subseteq (P \times T) \cup (T \times P)$  is a flow relation



#### Pre- and postset

Given a Petri Net N = (P, T, F), it is defined

for every transition  $t \in T$ 

- the preset  $t := \{p \in P | (p, t) \in F\}$
- the postset  $t^{\bullet} := \{p \in P | (t, p) \in F\}$

for every place  $p \in P$ 

- the preset  $\bullet p := \{t \in T | (t, p) \in F\}$
- the postset  $p^{\bullet} := \{t \in T | (p, t) \in F\}$



Definitions

## Markings and tokens

#### Definition

A marking of a Petri net N is a function  $m : P \to \mathbb{N}_0$  which assigns a number of *tokens* to every place. The set of all *markings* of a Petri net is M.

Given  $p_1, ..., p_n$ , we write the marking as a vector of dimension n which is written  $\bar{m} = (m_1, ..., m_n)$ . Each marking  $m_i \in \bar{m}$  is the number of tokens that is assigned to place  $p_i$ .



## Firing of a transition

Let *m* and *m'* be a markings of a Petri Net N = (N, T, F) and  $t \in T$ . We define

 $m \triangleright_t m'$  if and only if  $\forall p \in {}^{\bullet}t : m(p) > 0$  and

$$\forall p \in P : m'(p) = \\ \begin{cases} m(p) - 1 \text{ if } (p \in {}^{\bullet}t \land p \notin t^{\bullet}) \\ m(p) + 1 \text{ if } (p \notin {}^{\bullet}t \land p \in t^{\bullet}) \\ m(p) & \text{ if } (p \notin {}^{\bullet}t \land p \notin t^{\bullet}) \lor (p \in {}^{\bullet}t \land p \in t^{\bullet}) \end{cases}$$

A transition t can be executed, if there is a token on every place in the preset of t. We call this firing of a transition or, t is fired.

When a transition is fired, one token is removed from every place in the preset of t and one token is added to every place in the postset of t.

If s transitions are fired sequentially, we call this a sequence of transitions of length s.

## Example of a Petri net



## Example of a Petri net



| Definitions | Language Acceptance | Conclusion |
|-------------|---------------------|------------|
|             |                     |            |
|             |                     |            |

#### Mutex



Graphic by Dominik Drexler

### Extension of definitions for language acceptance

Let N = (P, T, F) be a Petri net and  $M^-$ ,  $M^+$  be finite sets of *initial and final markings* with  $M^- \subseteq M$  and  $M^+ \subseteq M$ .

Let  $\sum$  be a finite set of symbols (*alphabet*) and  $\ell : T \to \sum$  be a labeling function which assigns a symbol from the alphabet to every transition.

### Extension of definitions for language acceptance

This modified Petri Net accepts a word  $w \in \sum^*$  if there exists a firing sequence  $\tau$  from  $m^- \in M^-$  to  $m^+ \in M^+$  with  $\ell(\tau) = w$  with  $\ell(\tau) := \ell(t_1)...\ell(t_n)$ .

The set of all words accepted by N is denoted as L(N). L(N) is called the *language of* N.

## Petri nets and regular languages

For every regular language L, there exists a Petri net N such that L = L(N).

 $\rightarrow$  Petri nets are at least as expressive as DFA/NFA.

Example for acceptance of contextfree language

$$L = \{a^n c b^n | n \ge 0\}$$
  $m^- = (1, 0, 0)$   $m^+ = (0, 0, 1)$ 



Proseminar Talk Petri Nets

### Example for acceptance of contextsensitive language

 $L = \{a^n b^n c^n | n > 0\} \quad m^- = (1, 0, 0, 0, 0, 0) \quad m^+ = (0, 0, 0, 0, 0, 1)$ 



## Theorem

#### Theorem

The context-free mirror-language  $L = \{ww^R | w \in \{a, b\}^*\}$  is not a Petri net language.

#### Examples

- ▶ ∈ L: abba, aaaaaa
- ▶ ∉ L: aababaa, aabb

#### Lemma

#### Lemma

For every Petri net recognizing L, the following applies: for a sufficiently large s, only less than 2<sup>s</sup> markings are reachable.

Sketch of proof:

- Assume that the Petri net has got r transitions.
- We consider a sequence of s transitions.
- Let transition  $t_i$  be fired  $k_i$  times.
- We can reach as many markings as there are tuples  $(k_1, ..., k_r)$ .
- Therefore, there are  $(s+1)^r$  such tuples.

The number of tuples reachable is polynomial in growth while  $2^s$  is exponential in growth.

# Proof of Theorem

#### Theorem

The context-free mirror-language  $L = \{ww^R | w \in \{a, b\}^*\}$  is not a Petri net language.

- ▶ We assume that there is a Petri net *N* with *r* transitions accepting *L*.
- ► After reading s letters, there must be as many different markings as words of length s which is 2<sup>s</sup>.
- ► There are words w and w' which lead N to the same marking which means that N can't distinguish between ww<sup>R</sup> and w'w<sup>R</sup>.
- $\rightarrow$  Contradiction, *L* is not a Petri net language.



Applied Automata Theory Script RWTH Aachen, Page 171

## Source

Applied Automata Theory Script RWTH Aachen.
Prof. Dr. Wolfgang Thomas. Accessed, November 11, 2017