Petri Nets

Albert-Ludwigs-Universität Freiburg

January 27, 2018
Introduction

- Concurrent computing: several computations are executed concurrently and not sequentially.
- Many dependencies can exist in the system.
- A model is required to investigate these systems.
- DFA and NFA can grow very big.
Example for problem of concurrent computing

An example for a problem of concurrent computing is a shared resource:

- One resource is shared by several processes.
- Only one process should access the resource at the same time.
- Solution: mutex lock
Definitions

Definition
A Petri Net N consists of a tuple $N = (P, T, F)$ where

- P is a finite, nonempty set of *places*
- T is a finite, nonempty set of *transitions*
- $F \subseteq (P \times T) \cup (T \times P)$ is a *flow relation*
\[P = \{ p_1, p_2, p_3, p_4 \} \quad T = \{ t_1, t_2, t_3, t_4 \} \]
Pre- and postset

Given a Petri Net $N = (P, T, F)$, it is defined

for every transition $t \in T$

- the preset $\cdot t := \{ p \in P | (p, t) \in F \}$
- the postset $t^\bullet := \{ p \in P | (t, p) \in F \}$

for every place $p \in P$

- the preset $\cdot p := \{ t \in T | (t, p) \in F \}$
- the postset $p^\bullet := \{ t \in T | (p, t) \in F \}$
\[t_4 = \{ p_2, p_3 \} \quad t_4^\bullet = \{ p_4 \} \quad \bullet p_2 = \{ t_1, t_3 \} \quad p_2^\bullet = \{ t_3, t_4 \} \]
Markings and tokens

Definition

A marking of a Petri net N is a function $m : P \rightarrow \mathbb{N}_0$ which assigns a number of tokens to every place. The set of all markings of a Petri net is M.

Given p_1, \ldots, p_n, we write the marking as a vector of dimension n which is written $\vec{m} = (m_1, \ldots, m_n)$. Each marking $m_i \in \vec{m}$ is the number of tokens that is assigned to place p_i.
$m(p_1) = 1 \quad m(p_4) = 0 \quad \bar{m} = (1, 1, 0, 0)$
Firing of a transition

Let m and m' be a markings of a Petri Net $N = (N, T, F)$ and $t \in T$. We define

$m \triangleright_t m'$ if and only if $\forall p \in \bullet t : m(p) > 0$ and

$$\forall p \in P : m'(p) =
\begin{cases}
 m(p) - 1 & \text{if } (p \in \bullet t \land p \notin t^\bullet) \\
 m(p) + 1 & \text{if } (p \notin \bullet t \land p \in t^\bullet) \\
 m(p) & \text{if } (p \notin \bullet t \land p \notin t^\bullet) \lor (p \in \bullet t \land p \in t^\bullet)
\end{cases}$$
A transition \(t \) can be executed, if there is a token on every place in the preset of \(t \). We call this firing of a transition or, \(t \) is fired.

When a transition is fired, one token is removed from every place in the preset of \(t \) and one token is added to every place in the postset of \(t \).

If \(s \) transitions are fired sequentially, we call this a sequence of transitions of length \(s \).
Example of a Petri net

Slide 12

Albert-Ludwigs-Universität Freiburg

Proseminar Talk Petri Nets
Example of a Petri net
Mutex

Graphic by Dominik Drexler
Let $N = (P, T, F)$ be a Petri net and M^-, M^+ be finite sets of initial and final markings with $M^- \subseteq M$ and $M^+ \subseteq M$.

Let \sum be a finite set of symbols (alphabet) and $\ell : T \rightarrow \sum$ be a labeling function which assigns a symbol from the alphabet to every transition.
This modified Petri Net accepts a word \(w \in \Sigma^* \) if there exists a firing sequence \(\tau \) from \(m^- \in M^- \) to \(m^+ \in M^+ \) with \(\ell(\tau) = w \) with \(\ell(\tau) := \ell(t_1)\ldots\ell(t_n) \).

The set of all words accepted by \(N \) is denoted as \(L(N) \). \(L(N) \) is called the language of \(N \).
Petri nets and regular languages

For every regular language L, there exists a Petri net N such that $L = L(N)$.

\rightarrow Petri nets are at least as expressive as DFA/NFA.
Example for acceptance of context-free language

\[L = \{ a^n c b^n | n \geq 0 \} \quad m^- = (1, 0, 0) \quad m^+ = (0, 0, 1) \]
Example for acceptance of context-sensitive language

\[L = \{a^n b^n c^n | n > 0\} \quad m^- = (1, 0, 0, 0, 0, 0) \quad m^+ = (0, 0, 0, 0, 0, 1) \]
Theorem

The context-free mirror-language $L = \{ww^R | w \in \{a, b\}^*\}$ is not a Petri net language.

Examples

- $\in L$: $abba$, $aaaaaa$
- $\notin L$: $aababa$, $aabb$
Lemma

For every Petri net recognizing L, the following applies:
for a sufficiently large s, only less than 2^s markings are reachable.

Sketch of proof:

- Assume that the Petri net has got r transitions.
- We consider a sequence of s transitions.
- Let transition t_i be fired k_i times.
- We can reach as many markings as there are tuples (k_1, \ldots, k_r).
- Therefore, there are $(s + 1)^r$ such tuples.

The number of tuples reachable is polynomial in growth while 2^s is exponential in growth.
Proof of Theorem

Theorem

The context-free mirror-language \(L = \{ww^R| w \in \{a, b\}^*\} \) *is not a Petri net language.*

- We assume that there is a Petri net \(N \) with \(r \) transitions accepting \(L \).
- After reading \(s \) letters, there must be as many different markings as words of length \(s \) which is \(2^s \).
- There are words \(w \) and \(w' \) which lead \(N \) to the same marking which means that \(N \) can't distinguish between \(ww^R \) and \(w'w^R \).

\(\rightarrow \) Contradiction, \(L \) is not a Petri net language.
Applied Automata Theory Script RWTH Aachen, Page 171
Source