Using Unfoldings of Petri Nets for Verification of Systems

Dominik Drexler

27.01.2018

Introduction to System Verification

• Given a system (e.g. software system). Most prominent question:

- Given a system (e.g. software system). Most prominent question:
 - Does the system never reach a deadlock? (deadlock checking)

- Given a system (e.g. software system). Most prominent question:
 - Does the system never reach a deadlock? (deadlock checking)
- Traditional approach: Create Transition System and do a state space search

• Given *n* processes all doing the same following task:

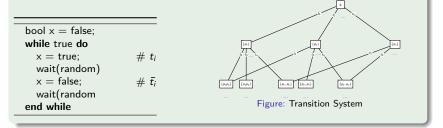
bool $x = false;$	
while true do	
x = true;	# t _i
wait(random)	
x = false;	$\# \bar{t}_i$
wait(random	
end while	

• Given *n* processes all doing the same following task:

bool $x = false;$	
while true do	
x = true;	$\# t_i$
wait(random)	
x = false;	$\# \bar{t}_i$
wait(random	
end while	

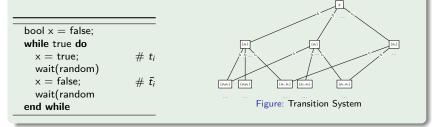
• Each state represented by the set of processes where x = true

• Given *n* processes all doing the same following task:



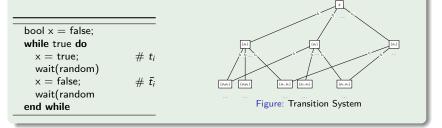
• Each state represented by the set of processes where x = true

• Given *n* processes all doing the same following task:



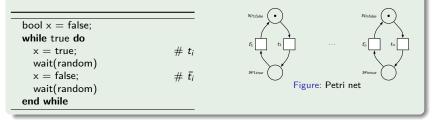
- Each state represented by the set of processes where x = true
- In this example $|\mathcal{P}(\{p_1,\ldots,p_n\})| = 2^n$ states.

• Given *n* processes all doing the same following task:

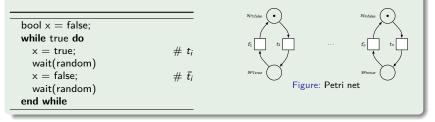


- Each state represented by the set of processes where x = true
- In this example $|\mathcal{P}(\{p_1,\ldots,p_n\})| = 2^n$ states.
- Searching for deadlock: Find state with no outgoing transitions which is no terminal state.

Given n processes all doing the same following task:

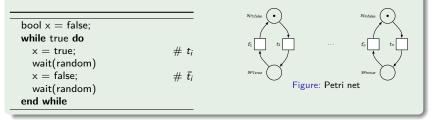


Given n processes all doing the same following task:



• Size is linear in n

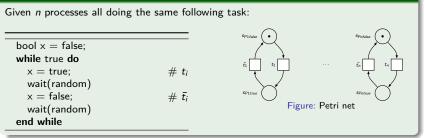
Given n processes all doing the same following task:



- Size is linear in n
- How to check for deadlocks?

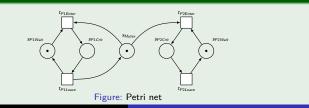
Alternative approach: Petri nets to model concurrency

Example



- Size is linear in n
- How to check for deadlocks?
- Cycles in Petri Nets are problematic

Example



• An Unfolding of a Petri Net is a Branching Process where

- All reachable markings are present
- All transitions enabled by a marking are present

- An Unfolding of a Petri Net is a Branching Process where
 - All reachable markings are present
 - All transitions enabled by a marking are present
- A Branching Process is an Occurence Net with a labelling function

- An Unfolding of a Petri Net is a Branching Process where
 - All reachable markings are present
 - All transitions enabled by a marking are present
- A Branching Process is an Occurence Net with a labelling function
- An Occurence Net is a net with a simpler structure

- An Unfolding of a Petri Net is a Branching Process where
 - All reachable markings are present
 - All transitions enabled by a marking are present
- A Branching Process is an Occurence Net with a labelling function
- An Occurence Net is a net with a simpler structure
- The labelling functions assigns each node in the occurence net a label of the original net

• Intuitively: Occurence Nets can be seen as 1-safe Nets.

Definition

- $|\bullet b| \le 1 \text{ for all } b \in B$
- O is acyclic
- **③** Every $x \in B \cup E$ has finitely many predecessors
- **(**) No event $e \in E$ is in conflict with itself (no backward conflicts)

- Intuitively: Occurence Nets can be seen as 1-safe Nets.
- Initially one token at each Condition of $Min(O) = \{b \in B | 0 = |\bullet b|\}$

- $|\bullet b| \le 1 \text{ for all } b \in B$
- O is acyclic
- **③** Every $x \in B \cup E$ has finitely many predecessors
- **(**) No event $e \in E$ is in conflict with itself (no backward conflicts)

- Intuitively: Occurence Nets can be seen as 1-safe Nets.
- Initially one token at each Condition of $Min(O) = \{b \in B | 0 = |{}^{\bullet}b|\}$

- $|\bullet b| \leq 1 \text{ for all } b \in B$
- O is acyclic
- **(**) Every $x \in B \cup E$ has finitely many predecessors
- **(**) No event $e \in E$ is in conflict with itself (no backward conflicts)

- Intuitively: Occurence Nets can be seen as 1-safe Nets.
- Initially one token at each Condition of $Min(O) = \{b \in B | 0 = |{}^{\bullet}b|\}$

- $|\bullet b| \leq 1 \text{ for all } b \in B$
- O is acyclic
- **(**) Every $x \in B \cup E$ has finitely many predecessors
- **(**) No event $e \in E$ is in conflict with itself (no backward conflicts)

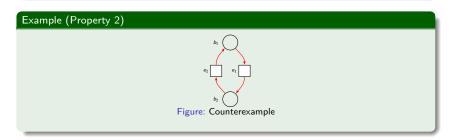
- Intuitively: Occurence Nets can be seen as 1-safe Nets.
- Initially one token at each Condition of $Min(O) = \{b \in B | 0 = |{}^{\bullet}b|\}$

- $|\bullet b| \leq 1 \text{ for all } b \in B$
- O is acyclic
- **(**) Every $x \in B \cup E$ has finitely many predecessors
- **(**) No event $e \in E$ is in conflict with itself (no backward conflicts)

- Intuitively: Occurence Nets can be seen as 1-safe Nets.
- Initially one token at each Condition of $Min(O) = \{b \in B | 0 = |\bullet b|\}$

- $|\bullet b| \leq 1 \text{ for all } b \in B$
- O is acyclic
- **(a)** Every $x \in B \cup E$ has finitely many predecessors
- **(**) No event $e \in E$ is in conflict with itself (no backward conflicts)

- $| \bullet b | \leq 1 \text{ for all } b \in B$
- **O** is acyclic
- **③** Every $x \in B \cup E$ has finitely many predecessors
- **(**) No event $e \in E$ is in conflict with itself (no backward conflicts)



- $|\bullet b| \le 1 \text{ for all } b \in B$
- O is acyclic
- **③** Every $x \in B \cup E$ has finitely many predecessors
- No event $e \in E$ is in conflict with itself (no backward conflicts)

An Occurrence Net is a net O = (B, E, F) with the following properties:

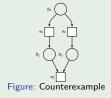
- $| \bullet b | \le 1 \text{ for all } b \in B$
- O is acyclic
- **③** Every $x \in B \cup E$ has finitely many predecessors
- No event $e \in E$ is in conflict with itself (no backward conflicts)

Definition

x is in conflict with y denoted by x # y iff there exists two paths $p_1 = b, e_1, \ldots, x$ and $p_2 = b, e_2, \ldots, y$ for $b \in B$ and $e_1 \neq e_2 \in E$.

Example (Property 4)

- Either e1 or e2 can fire
- \Rightarrow Either b_2 or b_3 receives a token
- ullet \Rightarrow e_3 cannot be fired at any time
- $\bullet \Rightarrow \mathsf{makes no sense to allow such} \\ \mathsf{thing}$

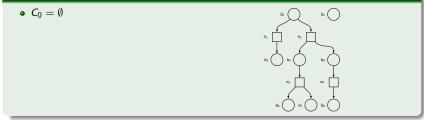


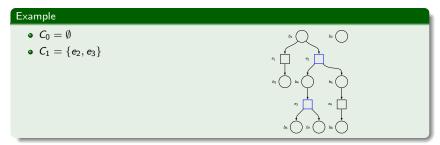
Definition

A set of events is a configuration C iff the following properties are satisfied:

$$\bullet \in C \Rightarrow \forall e' < e : e' \in C$$

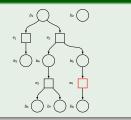
$$e, e' \in C : \neg (e \# e')$$





Example

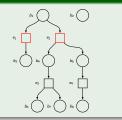
- $C_0 = \emptyset$
- $C_1 = \{e_2, e_3\}$
- $\{e_4\}$ is not a configuration!



Definition A set of events is a configuration C iff the following properties are satisfied: • $e \in C \Rightarrow \forall e' < e : e' \in C$ • $\forall e, e' \in C : \neg(e \# e')$

Example

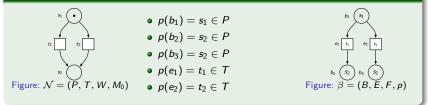
- $C_0 = \emptyset$
- $C_1 = \{e_2, e_3\}$
- {*e*₄} is not a configuration!
- $\{e_1, e_2\}$ is not a configuration!



Let $\mathcal{N} = (P, T, W, M_0)$ be a Petri net. A Branching Process is a labelled occurence net $\beta = (O, p) = (B, E, F, p)$ where p is the labelling function with the following properties:

- Por every e ∈ E, the restriction of p to •e is a bijection between •e (in β) and •p(e) (in N)
- **(a)** The restriction of p to $Min(O) := \{b \in B | 0 = |\bullet b|\}$ is a bijection between Min(O) and M_0
- For every $e_1, e_2 \in E$ if $\bullet e_1 = \bullet e_2$ and $p(e_1) = p(e_2)$ then $e_1 = e_2$

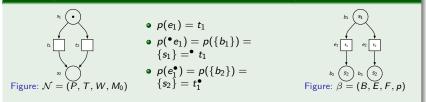
Example (Property 1: Preservation of the nature of nodes)



Let $\mathcal{N} = (P, T, W, M_0)$ be a Petri net. A Branching Process is a labelled occurence net $\beta = (O, p) = (B, E, F, p)$ where p is the labelling function with the following properties:

- $p(B) \subseteq P$ and $P(E) \subseteq T$
- **②** For every $e \in E$, the restriction of p to [•]e is a bijection between [•]e (in β) and [•]p(e) (in N)
- **(a)** The restriction of p to $Min(O) := \{b \in B | 0 = |\bullet b|\}$ is a bijection between Min(O) and M_0
- For every $e_1, e_2 \in E$ if $\bullet e_1 = \bullet e_2$ and $p(e_1) = p(e_2)$ then $e_1 = e_2$

Example (Property 2: Preservation of transition environment)



Let $\mathcal{N} = (P, T, W, M_0)$ be a Petri net. A Branching Process is a labelled occurence net $\beta = (O, p) = (B, E, F, p)$ where p is the labelling function with the following properties:

- $p(B) \subseteq P$ and $P(E) \subseteq T$
- **②** For every $e \in E$, the restriction of p to [•]e is a bijection between [•]e (in β) and [•]p(e) (in N)
- **(a)** The restriction of p to $Min(O) := \{b \in B | 0 = |\bullet b|\}$ is a bijection between Min(O) and M_0
- For every $e_1, e_2 \in E$ if $\bullet e_1 = \bullet e_2$ and $p(e_1) = p(e_2)$ then $e_1 = e_2$

Example (Property 3: β starts at M_0)

•
$$M_0 = \{s_1, s_1, s_2\}$$

• β has three minimal nodes b_1, b_2, b_3 without incoming edges.

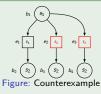
•
$$p(b_1) = s_1$$
, $p(b_2) = s_1$ and $p(b_3) = s_2$

Definition

Let $\mathcal{N} = (P, T, W, M_0)$ be a Petri net. A Branching Process is a labelled occurence net $\beta = (O, p) = (B, E, F, p)$ where p is the labelling function with the following properties:

- $p(B) \subseteq P$ and $P(E) \subseteq T$
- **②** For every $e \in E$, the restriction of p to [•]e is a bijection between [•]e (in β) and [•]p(e) (in N)
- **(a)** The restriction of p to $Min(O) := \{b \in B | 0 = |\bullet b|\}$ is a bijection between Min(O) and M_0
- For every $e_1, e_2 \in E$ if $\bullet e_1 = \bullet e_2$ and $p(e_1) = p(e_2)$ then $e_1 = e_2$

Example (Property 4: β does not duplicate transitions)



• What is the marking reached by a configuration?

Definition

A set of events is a configuration C iff the following properties are satisfied:

$$\bullet \in C \Rightarrow \forall e' \leq e : e' \in C$$

$$\forall e, e' \in C : \neg (e \# e')$$

• What is the marking reached by a configuration?

Definition

A set of events is a configuration C iff the following properties are satisfied:

- $\bullet \in C \Rightarrow \forall e' \leq e : e' \in C$
- $e, e' \in C : \neg (e \# e')$
- *Mark*(*C*) denotes the marking reached by fireing all events in *C*.

Markings reached by Configurations

• What is the marking reached by a configuration?

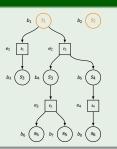
Definition

A set of events is a configuration C iff the following properties are satisfied:

$$e \in C \Rightarrow \forall e' \le e : e' \in C$$
$$\forall e, e' \in C : \neg (e \# e')$$

• *Mark*(*C*) denotes the marking reached by fireing all events in *C*.

•
$$Mark(\emptyset) = p(Min(O)) = p(\{b_1, b_2\}) = \{s_1, s_2\}$$



Markings reached by Configurations

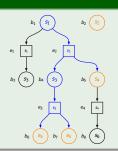
• What is the marking reached by a configuration?

Definition

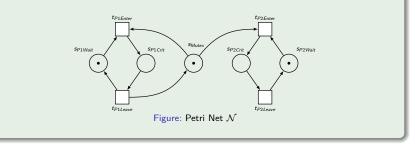
A set of events is a configuration C iff the following properties are satisfied:

• *Mark*(*C*) denotes the marking reached by fireing all events in *C*.

- $Mark(\emptyset) = p(Min(O)) = p(\{b_1, b_2\}) = \{s_1, s_2\}$
- $Mark(\{e_2, e_3\}) = p(\{b_2, b_5, b_6, b_7\}) = \{s_2, s_4, s_5, s_5\}$

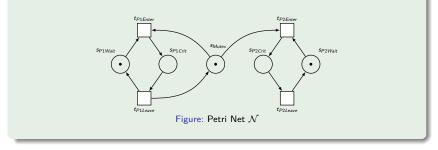


 $\bullet\,$ Given: The Petri Net ${\cal N}$ which models mutual exclusion



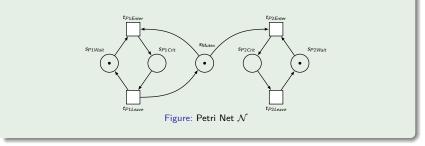
Example

 \bullet Given: The Petri Net ${\cal N}$ which models mutual exclusion

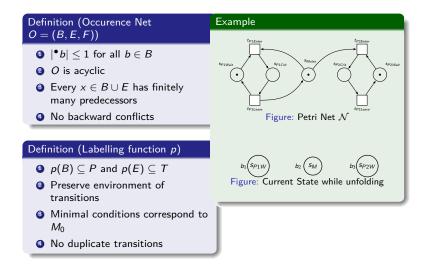


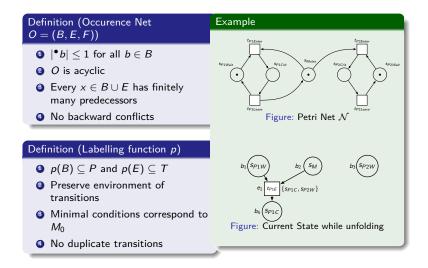
 \bullet Goal: Compute Unfolding of ${\cal N}$

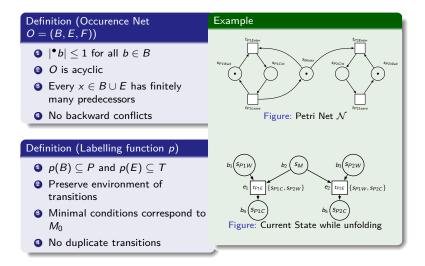
 \bullet Given: The Petri Net ${\cal N}$ which models mutual exclusion

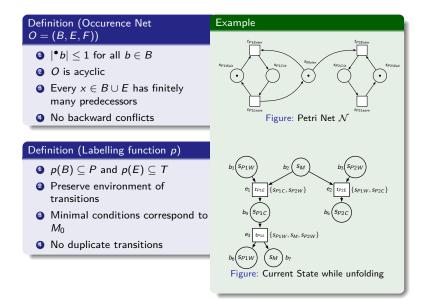


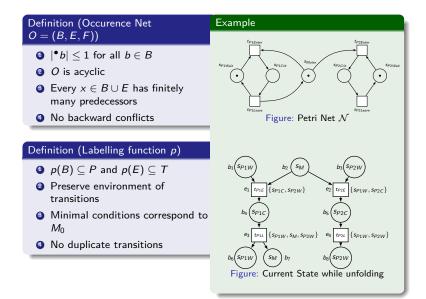
- $\bullet\,$ Goal: Compute Unfolding of ${\cal N}\,$
- Unfolding is a Branching Process where:
 - All reachable markings are present
 - All transitions enabled by a marking are present

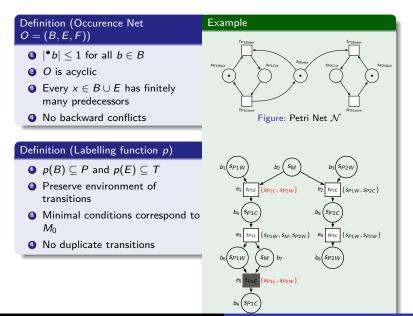


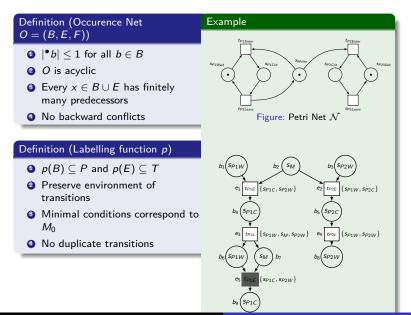












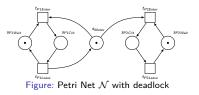
Definition (Deadlock: Petri Net vs Unfolding)

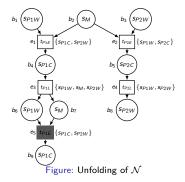
Let \mathcal{N} be a Petri Net and β its Unfolding.

 ${\cal N}$ has a deadlock if there exists a reachable marking M which is no terminal marking and no transition is enabled.

 \Leftrightarrow There exists a configuration *C* in β for which Mark(C) = M and *M* is no terminal marking of N and *C* is in conflict with all cutoff events.

- Configuration $C = \{e_2, e_4\}$ with $Mark(C) = \{s_{P1W}, s_{P2W}\}$ is a deadlock!
- Search techniques:
 - Backtracking search
- Exponential time complexity for search





• Structure of Unfoldings was presented

- Structure of Unfoldings was presented
- Construction of Unfoldings was presented

- Structure of Unfoldings was presented
- Construction of Unfoldings was presented
- Unfolding not necessarily smaller than the Transition System

- Structure of Unfoldings was presented
- Construction of Unfoldings was presented
- Unfolding not necessarily smaller than the Transition System
- More concurrency \Rightarrow Much smaller Unfolding

- Structure of Unfoldings was presented
- Construction of Unfoldings was presented
- Unfolding not necessarily smaller than the Transition System
- More concurrency \Rightarrow Much smaller Unfolding
- Size reduction up to an exponential factor possible

- Structure of Unfoldings was presented
- Construction of Unfoldings was presented
- Unfolding not necessarily smaller than the Transition System
- More concurrency \Rightarrow Much smaller Unfolding
- Size reduction up to an exponential factor possible
- Search in Transition System linear running time in its size

- Structure of Unfoldings was presented
- Construction of Unfoldings was presented
- Unfolding not necessarily smaller than the Transition System
- More concurrency \Rightarrow Much smaller Unfolding
- Size reduction up to an exponential factor possible
- Search in Transition System linear running time in its size
- Search in Unfolding exponential running time in its size

- Structure of Unfoldings was presented
- Construction of Unfoldings was presented
- Unfolding not necessarily smaller than the Transition System
- More concurrency \Rightarrow Much smaller Unfolding
- Size reduction up to an exponential factor possible
- Search in Transition System linear running time in its size
- Search in Unfolding exponential running time in its size
- Overall verification speed is increased

- Using Unfoldings to avoid the State Explosion Problem K.L. McMillan
- An improvment of McMillans Net Unfolding J. Esparza, S. Römer, W. Vögler