
E�cient representation of �nite sets

Ivo Rapant

January 27, 2018

1

Roadmap

I Motivation

I Basics

I New Data-Structure

I Operation on �xed-length languages

I Decision Diagrams

I Conclusion

2

Motivation

3

Motivation

Constraints:

I �nite sets

I �xed-length languages
I words of the same length

4

Motivation - Example

Σ = {a, b}, n = 5

Language

→ L = {aaaaa, aaaab, aaaba, aaabb, aabaa, aabab, aabba, aabbb,
abaaa, abaab, ababa, ababb, abbaa, abbab, abbba, abbbb,
baaaa, baaab, baaba, baabb, babaa, babab, babba, babbb,
bbaaa, bbaab, bbaba, bbabb, bbbaa, bbbab, bbbba, bbbbb}

DFA

q0 q1 q2 q3 q4 q5
a, b a, b a, b a, b a, b

5

Motivation - Example

Σ = {a, b}, n = 5

Language

→ L = {aaaaa, aaaab, aaaba, aaabb, aabaa, aabab, aabba, aabbb,
abaaa, abaab, ababa, ababb, abbaa, abbab, abbba, abbbb,
baaaa, baaab, baaba, baabb, babaa, babab, babba, babbb,
bbaaa, bbaab, bbaba, bbabb, bbbaa, bbbab, bbbba, bbbbb}

DFA

q0 q1 q2 q3 q4 q5
a, b a, b a, b a, b a, b

5

Motivation - Example

Σ = {a, b}, n = 5

Language

→ L = {aaaaa, aaaab, aaaba, aaabb, aabaa, aabab, aabba, aabbb,
abaaa, abaab, ababa, ababb, abbaa, abbab, abbba, abbbb,
baaaa, baaab, baaba, baabb, babaa, babab, babba, babbb,
bbaaa, bbaab, bbaba, bbabb, bbbaa, bbbab, bbbba, bbbbb}

DFA

q0 q1 q2 q3 q4 q5
a, b a, b a, b a, b a, b

5

Motivation - General

Observation:

For a Language L = Σn for a given n ∈ N
the size of |L| = |Σ|n.

When we de�ne the size of automaton as |A| = |δ|, the size of the

transition relation δ, and say AL is the automaton for L, we see

that |AL| = n.

q0 q1 q2 qn
Σ Σ Σ

6

Basics

7

Language L

A language L ⊆ Σ∗ has length n ≥ 0 if every word of L has length

n. If L has length n for some n ≥ 0 then we say that L is a

�xed-length language, or that it has �xed-length.

Given a language L ⊆ Σ∗ and a ∈ Σ , the language La is de�ned by

La = {w ∈ Σ∗ | aw ∈ L}. So if |L| = n, then |La| = n − 1.

8

Language L

A language L ⊆ Σ∗ has length n ≥ 0 if every word of L has length

n. If L has length n for some n ≥ 0 then we say that L is a

�xed-length language, or that it has �xed-length.

Given a language L ⊆ Σ∗ and a ∈ Σ , the language La is de�ned by

La = {w ∈ Σ∗ | aw ∈ L}. So if |L| = n, then |La| = n − 1.

8

Master Automaton

The master automaton over the alphabet Σ is the tuple

M = (QM ,Σ, δM ,FM), where

I QM is the set of all �xed-length languages over Σ;

I δ : QM × Σ→ QM is given by δ(L, a) = La for every q ∈ QM

and a ∈ Σ;

I FM is the singleton set containing the language {ε} as only
element.

9

Master Automaton

{aaa, aab, baa, bab, bba, bbb} {aaa, abb, baa, bab, bbb}

{aa.ab, ba} {aa, ab, ba, bb} {ab, bb} {aa, ab, bb}

{a} {a, b} {b}

{ε} ∅

a
b

a
b

b a a, b a, b a

b

a

b
a, b b

a

a, b

a, b

Figure: A fragment of the master automaton for the alphabet {a, b}

10

Master Automaton

Proposition 1
Let L be a �xed-length language. The language recognized from

the state L of the master automaton is L.

Proposition 2
For every �xed-length language L, the automaton AL is the minimal

DFA recognizing L.

11

Data Structure for Fixed-length

Languages

12

Data Structure for Fixed-length Languages

De�nition
Let L = {L1, . . . , LN} be a set of languages of the same length

over the same alphabet Σ. The multi-DFA AL is the tuple

AL = (QL,ΣL, δL,Q0L,FL), where QL is the set of states of the

master automaton reachable from at least one of the states

L1, . . . , Ln;Q0L = {L1, . . . , Ln}; δL is the projection of δM onto QL;

and FL = FM .

13

Example multi-DFA

5

L1

6

L2

7

L3

2 3 4

1

a, b
a b a, b

a
a, b

b

Figure: The multi-DFA for

L1 = {aa, ba}, L2 = {aa, ba, bb},
and L3 = {ab, bb}.

Representation of multi-DFAs as

I table of nodes

I node: pair 〈q, s〉
q: state identi�er

s: successor tuple of the

node

I special case

q = 0 : state accepting

empty language

14

Example multi-DFA

5

L1

6

L2

7

L3

2 3 4

1

a, b
a b a, b

a
a, b

b

Figure: The multi-DFA for

L1 = {aa, ba}, L2 = {aa, ba, bb},
and L3 = {ab, bb}.

Representation of multi-DFAs as

I table of nodes

I node: pair 〈q, s〉
q: state identi�er

s: successor tuple of the

node

I special case

q = 0 : state accepting

empty language

14

Example multi-DFA

5

L1

6

L2

7

L3

2 3 4

1

a, b
a b a, b

a
a, b

b

Figure: The multi-DFA for

L1 = {aa, ba}, L2 = {aa, ba, bb},
and L3 = {ab, bb}.

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

Table: The table for the multi-DFA

15

Procedure make

make(s)

I returns the state of table T having s as successor tuple

I if such state doesn't exist, it adds a new node 〈q, s〉 to T, with

a fresh identi�er q

16

multi-DFA

5

L1

6

L2

7

L3

8

L2 ∩ L3

2 3 4

1

a, b
a b a, b

b

a
a, b

b

Figure: The multi-DFA for with

L1 = {aa, ba}, L2 = {aa, ba, bb},
and L3 = {ab, bb}.

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

Table: The table for the multi-DFA

17

Operations on �xed-length

languages

18

Operations of �xed-length languages

Input: multi-DFAs represented as a table of nodes

Operations:

I Intersection

I Union

I Complement

I Emptiness

I Universal

I Inclusion

19

Operations on �xed-length languages

20

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

inter(6, 7)

6, 7 7→ ?

21

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ ?

? 7→ ? ? 7→ ?

a b

22

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ ?

2, 4 7→ ? ? 7→ ?

? 7→ ? ? 7→ ?

a b

a b

23

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ ?

2, 4 7→ ? ? 7→ ?

1, 0 7→ ? 0, 1 7→ ?

a b

a b

24

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ ?

2, 4 7→ ? ? 7→ ?

1, 0 7→ 0 0, 1 7→ 0

a b

a b

25

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ ?

2, 4 7→ 0 ? 7→ ?

1, 0 7→ 0 0, 1 7→ 0

a b

a b

26

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ ?

2, 4 7→ 0 4, 4 7→ ?

1, 0 7→ 0 0, 1 7→ 0 0, 0 7→ 0 1, 1 7→ 1

a b

a b a b

27

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ ?

2, 4 7→ 0 4, 4 7→ 4

1, 0 7→ 0 0, 1 7→ 0 0, 0 7→ 0 1, 1 7→ 1

a b

a b a b

28

An execution of inter

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1

5 2 2

6 2 3

7 4 4

8 0 4

6, 7 7→ 8

2, 4 7→ 0 4, 4 7→ 4

1, 0 7→ 0 0, 1 7→ 0 0, 0 7→ 0 1, 1 7→ 1

a b

a b a b

29

Decision Diagrams

30

Motivation

Σ = {a, b}, n = 5

Language

→ L = {aaaaa, aaaab, aaaba, aaabb, aabaa, aabab, aabba, aabbb,
abaaa, abaab, ababa, ababb, abbaa, abbab, abbba, abbbb,
baaaa, baaab, baaba, baabb, babaa, babab, babba, babbb,
bbaaa, bbaab, bbaba, bbabb, bbbaa, bbbab, bbbba, bbbbb}

DFA

q0 q1 q2 q3 q4 q5
a, b a, b a, b a, b a, b

DD

q0 q5
Σ5

31

Decision Diagrams

A decision diagram (DD) is an automaton A = (Q,Σ, δ,Q0,F)
whose transitions are labelled by regular expressions of the form

aΣn = aΣΣ . . .ΣΣ︸ ︷︷ ︸
n

and satis�es the following determinacy condition:

for every q ∈ Q and a ∈ Σ there is exactly one k ∈ N such that

δ(q, aΣk) 6= ∅, and for this k there is a state q′ such that

δ(q, aΣk) = {q′}.

32

Decision Diagrams

Reduction Rule

33

Decision Diagrams

DFA for a language of length four:

q0

q1

q2

q3

q4

q5

q6

q7

a

b

a, b

a

b

a, b

a, b

a, b

b

DD for the same language:

r0

r1 r2

r3
a · Σ3

b a · Σ2

b · Σ

b

34

Decision Diagrams

DFA for a language of length four:

q0

q1

q2

q3

q4

q5

q6

q7

a

b

a, b

a

b

a, b

a, b

a, b

b

DD for the same language:

r0

r1 r2

r3
a · Σ3

b a · Σ2

b · Σ

b

34

Decision Diagrams and Kernels

A �xed-length language L over an alphabet Σ is a kernel if

L = ∅, L = {ε}, or there are a, b ∈ Σ such that La 6= Lb. The

kernel of a �xed-length language L, denoted by 〈L〉, is the unique

kernel satisfying L = Σk〈L〉 for some k ≥ 0.

35

Decision Diagrams and Kernels

{aaa, aab, baa, bab, bba, bbb} {aaa, abb, baa, bab, bbb}

{aa.ab, ba} {aa, ab, ba, bb} {ab, bb} {aa, ab, bb}

{a} {a, b} {b}

{ε} ∅

a
b

a
b

b a a, b a, b a

b

a

b
a, b b

a

a, b

a, b

Figure: Fragment of the master

automaton

{aaa, aab, baa, bab, bba, bbb} {aaa, abb, baa, bab, bbb}

{aa.ab, ba} {aa, ab, bb}

{a} {b}

{ε} ∅

a

bΣ2

aΣ
b

b

aΣ

aΣ
b

a

b

b
a

a, b

a, b

Figure: Fragment of the master

decision diagram

36

DD

4

3 2

1
a · Σ3

b a · Σ2

b · Σ

b

Figure: multi-DD

Representation of multi-DDs as

I table of kernodes

I kernode: triple 〈q, l , s〉

37

DD

4

3 2

1
a · Σ3

b a · Σ2

b · Σ

b

Figure: multi-DD

Representation of multi-DDs as

I table of kernodes

I kernode: triple 〈q, l , s〉

37

DD

4

3 2

1
a · Σ3

b a · Σ2

b · Σ

b

Figure: multi-DD

Ident. Length a-succ b-succ

4 4 1 3

3 3 1 2

2 1 0 1

Table: The table for the multi-DD

38

Procedure kmake

kmake(l,s)

I behaves like make

I returns kernode q of length l with s as successor-tuple

I if such state doesn't exist it adds a new kernode 〈q, l , s〉with a

fresh identi�er q

39

Operations on Kernels

40

An execution of kinter

Ident. Length a-succ b-succ

2 1 1 0

3 1 0 1

5 2 2 3

6 2 2 1

8 3 5 0

9 3 5 1

10 3 1 6

12 4 8 9

13 4 1 10

14 3 5 6

15 4 8 14

41

An execution of kinter

Ident. Length a-succ b-succ

2 1 1 0

3 1 0 1

5 2 2 3

6 2 2 1

8 3 5 0

9 3 5 1

10 3 1 6

12 4 8 9

13 4 1 10

14 3 5 6

15 4 8 14

42

Conclusion

43

References

I Automata Theory - An algorithmic approach: Chapter 7

https://www7.in.tum.de/~esparza/autoskript.pdf

44

https://www7.in.tum.de/~esparza/autoskript.pdf

