
Prof. Dr. Andreas Podelski
Tanja Schindler

Hand in until January 12, 2018
11:59 via the post boxes

Discussion: January 15, 2018

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 10

The overall goal of this sheet is to understand Nondeterministic Finite Automata (NFA).
These NFAs can be used to verify a certain class of linear-time properties, namely regular
safety properties. That is, checking regular safety properties can be reduced to invariant
checking with the help of an NFA that accepts the bad prefixes. (Later we will see how
ω-regular liveness properties can be verified by using a different class of automata.)
We have already studied algorithms for invariant checking (see Sheet 7). This sheet aims
at providing a deeper understanding of how NFAs can be used to expand the domain of
application of these algorithms to checking a more general class of properties.

Exercise 1: NFA → regular expression
Consider the following NFA over the alphabet Σ = {A,B}, which are given in a graphical
representation where accepting states have double circles.

(a)

q0 q1 q2A
A

B
A

A

(b)
q0

q1q2

A,B

B
A

A

B

Write for each NFA a regular expression such that the language described by the regular
expression is the language that is accepted by the NFA.

Motivation: This exercise serves as a preparation for applying NFAs to verify safety
properties. It aims at learning how to read NFAs, i.e., learning how to determine the
corresponding regular language (NFAs and regular expressions are just two different ways
to represent regular languages).

Exercise 2: Regular expression → NFA
Consider the following regular expressions over the alphabet Σ = {A,B}.

(a) (AB + B∗)ABA∗A (b) ((ABAB)∗ + AB)∗AB(B∗ + ∅A)

Construct for each regular expression an NFA such that the language accepted by the
NFA is the language that is described by the regular expression. You may give your NFA
as a five tuple or use the graphical representation.

Motivation: This exercise complements the first exercise. For verification purposes, one
needs to be able to construct NFAs that accept a certain language (given, for instance,
as a regular expression).

1



Exercise 3: Symbolic automata
Consider the following symbolic NFA A over the alphabet 2AP with AP = {a, b}.

q0

q1 q2 q3

q4 q5 q6

a ∨ b

¬b

¬a ∧ ¬b
a

¬b

a ∨ ¬b a ∧ ¬b
¬b

Which of the following words is accepted by A? Give a short explanation.

(a) w1 = {a} {} {a} {b}
(b) w2 = {a} {} {a}

(c) w3 = {b} {} {a, b} {a} {a}
(d) w4 = {a} {a} {a} {} {a}

Motivation: Symbolic notation in terms of a propositional logic formula is often more
convenient than enumerating sets of propositions that satisfy the corresponding formula.
One goal of this exercise is to learn how to switch between the two representations.
Another goal is, as in Exercise 1, to learn how to read (symbolic) NFAs.

Exercise 4: Regular safety properties
Let AP = {a, b, c}. Consider the following regular safety properties:

(a) P1: If a becomes valid, afterward b stays valid ad infinitum or until c holds.

(b) P2: Between two neighbouring occurrences of a, b always holds.

Construct an NFA Ai for each property Pi such that L(Ai) = BadPref(Pi).

Hint : You may use a symbolic NFA with propositional formulae over the set AP as
transition labels.

Motivation: The first step towards verifying a regular safety property P is to construct
the NFA that accepts the set of bad prefixes of P . The goal of this exercise is to learn to
identify the set of bad prefixes of P (a set of finite words) and then “translate” this set
into an NFA. Note that it is not possible to construct such an automaton for arbitrary
safety properties (why?).

2


