
–
1

–
2

0
17

-1
0

-1
7

–
m

ai
n

–

Real-Time Systems

Lecture 1: Introduction

2017-10-17

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



Content
–

1
–

2
0

17
-1

0
-1

7
–

S
co

n
te

n
t

–

2/49

• Introduction

• a software engineering perspective

• a theoretical computer science perspective

• Real-Time Systems

• vs. reactive systems

• vs. hybrid systems

• safety-critical systems

• examples

• Lecture Content Overview

• and non-content

• Formalia

• times/dates, procedures, exam

• A Formal Model of Real-Time Behaviour

• state variables / observables

• evolution / behaviour



Introduction: Software Engineering Perspective

–
1

–
2

0
17

-1
0

-1
7

–
m

ai
n

–

3/49



Recall: Software Engineering
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

sw
e

–

4/49

Software!

Customer Developer

Requirements
Engineering

re-
quire-
ments

Design

design
ideas

Implementation

code

Quality Assurance

• • •

depends on

considers

validation verification verification

• misunderstandings / errors detected late in development can be expensive:

• design and implementation may need to be re-done.

• misunderstandings / errors detected only during use can be fatal:

• software malfunction may harm business goals, or even lead to people being hurt.



Recall: Formal Methods
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

sw
e

–

5/49

• One approach to detect misunderstandings / errors early:

• describe requirements precisely / formally / mathemathically

• try to prove requirements to be consistent, complete, etc.

• describe design ideas precisely / formally / mathemathically

• try to prove that design satisfies requirements, i.e. that design is correct

Software!

Customer Developer

Requirements
Engineering

formal

specifi-

cation

Design

formal

design

model

Implementation

gene-

rated

code

Quality Assurance

• • •

depends on

considers

validation verification
(prove correctness)

generate
correct code



Necessary Ingredients
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

sw
e

–

6/49

Software!

Customer Developer

Requirements
Engineering

formal

specifi-

cation

Design

formal

design

model

Implementation

gene-

rated

code

Quality Assurance

• • •

depends on

considers

validation verification
(prove correctness)

generate
correct code

(ii) (iii) (iv)

(v)

To develop software that is (provably) correct wrt. its requirements, we need:

(i) a formal model of software behaviour

(ii) a language∗ to specifiy requirements on behaviour,
(to distinguish desired from undesired behaviour),

(iii) a language∗ to specify behaviour of design ideas,

(iv) a notion of correctness
(a relation between requirements and design specifications),

(v) and a method to verify (or prove) correctness
(that a given pair of requirements and design specifications are in correctness relation).

∗: at best concisely and conveniently, with adequate expressive power.



Example (Un-timed): Traffic Lights
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

sw
e

–

7/49

d
e

ri
ve

d
fr

o
m

:F
.W

e
lt

e
r-

S
ch

u
lt

e
s,

C
C

0

• Choose observables:
R: red light on, R: red light off, Y : yellow light on, Y : yellow light off,
G: green light on. G: green light off.

• Model of (finite) behaviour: Σ∗, where Σ = ({R,R} × {Y, Y } × {G,G}).
We write, e.g., RYG as shorthand for (R, Y ,G).

Example behaviours:

• RYG, RYG, RYG • RYG, RYG, RYG

• Requirements:

• Desired lights sequence: red, red-yellow, green, yellow, . . .

Formalisation: Req
1
:= (RYG.RYG.RYG.RYG)∗

• Undesired configuration: red-green

Formalisation: Req
2
:= Σ∗.RYG.Σ∗

• Design:
Des0 := RYG RYG RYG

RYG

• Define notion of correctness:
A design Des is correct wrt. requirement Req if and only if L(Des) ⊆ L(Req).

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Example (Un-timed): Traffic Lights
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

sw
e

–

7/49

d
e

ri
ve

d
fr

o
m

:F
.W

e
lt

e
r-

S
ch

u
lt

e
s,

C
C

0

• Choose observables:
R: red light on, R: red light off, Y : yellow light on, Y : yellow light off,
G: green light on. G: green light off.

• Model of (finite) behaviour: Σ∗, where Σ = ({R,R} × {Y, Y } × {G,G}).
We write, e.g., RYG as shorthand for (R, Y ,G).

Example behaviours:

• RYG, RYG, RYG • RYG, RYG, RYG

• Requirements:

• Desired lights sequence: red, red-yellow, green, yellow, . . .

Formalisation: Req
1
:= (RYG.RYG.RYG.RYG)∗

• Undesired configuration: red-green

Formalisation: Req
2
:= Σ∗.RYG.Σ∗

• Design:
Des0 := RYG RYG RYG

RYG

• Define notion of correctness:
A design Des is correct wrt. requirement Req if and only if L(Des) ⊆ L(Req).

• Design Des0 is correct wrt. requirements Req
1

and Req
2

(proof method: automata theory).

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Necessary Ingredients
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

sw
e

–

8/49

Software!

Customer Developer

Requirements
Engineering

formal

specifi-

cation

Design

formal

design

model

Implementation

gene-

rated

code

Quality Assurance

• • •

depends on

considers

validation verification
(prove correctness)

generate
correct code

(ii) (iii) (iv)

(v)

To develop software that is (provably) correct wrt. its requirements, we need:

(i) a formal model of software behaviour

(ii) a language∗ to specifiy requirements on behaviour,
(to distinguish desired from undesired behaviour),

(iii) a language∗ to specify behaviour of design ideas,

(iv) a notion of correctness
(a relation between requirements and design specifications),

(v) and a method to verify (or prove) correctness
(that a given pair of requirements and design specifications are in correctness relation).

∗: at best concisely and conveniently, with adequate expressive power.



Example (Timed): Traffic Lights
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

sw
e

–

9/49

• Requirement: yellow phases (RYG) should have a duration of 3 seconds
on streets with speed limit 50 km/h.

• How do we formally model traffic lights behaviour with time?

For example (informal):

• red for 10 s

• red-yellow for 2 s

• green for 120 s

• yellow for 3 s

• How do we formalise the timed requirement of 3 s?

• How do we formally model a controller design with time?

• What does it mean for a timed design to be correct wrt. a timed requirement?

• How do we prove timed designs correct wrt. timed requirements?

→ Lecture “Real-Time Systems”



Content
–

1
–

2
0

17
-1

0
-1

7
–

S
co

n
te

n
t

–

10/49

• Introduction

• a software engineering perspective

• a theoretical computer science perspective

• Real-Time Systems

• vs. reactive systems

• vs. hybrid systems

• safety-critical systems

• examples

• Lecture Content Overview

• and non-content

• Formalia

• times/dates, procedures, exam

• A Formal Model of Real-Time Behaviour

• state variables / observables

• evolution / behaviour



Introduction: Theoretical Computer Science Perspective

–
1

–
2

0
17

-1
0

-1
7

–
m

ai
n

–

11/49



Logics and Automata for Timed Behaviour
–

1
–

2
0

17
-1

0
-1

7
–

S
in

tr
o

tc
s

–

12/49

Lectures like Introduction to Theoretical Computer Science (“Informatik 3”)
cover content such as

• propositional logic

• syntax, semantics, decision problems (e.g., satisfiability is decidable)

• finite automata

• syntax, language of an automaton

• decision problems (e.g., language emptiness is decidable)

• properties, e.g., finite automata are closed under intersection

• Questions: Are there logics whose models are timed behaviours?

• Is satisfiability still decidable?

• If not for the full logic, then for which fragment?

• Questions: If we equip finite automata with real-time clocks,

• is language emptiness still decidable?

• are the set of such timed automata still closed under intersection?

• is it decidable whether a timed automaton satisfies a timed property?

→ Lecture “Real-Time Systems”

westphal
Bleistift



Content
–

1
–

2
0

17
-1

0
-1

7
–

S
co

n
te

n
t

–

13/49

• Introduction

• a software engineering perspective

• a theoretical computer science perspective

• Real-Time Systems

• vs. reactive systems

• vs. hybrid systems

• safety-critical systems

• examples

• Lecture Content Overview

• and non-content

• Formalia

• times/dates, procedures, exam

• A Formal Model of Real-Time Behaviour

• state variables / observables

• evolution / behaviour



Reactive Systems
–

1
–

2
0

17
-1

0
-1

7
–

S
rt

d
e

f
–

14/49

• A reactive system interacts with its environment
by reacting to inputs from the environment with certain outputs.

• Reactive systems usually do not terminate.
For example, the traffic lights controller continues to run,
unless there is a power outage or a scheduled maintenance.

• Contrast: terminating, transformational systems.
For example: a sorting or searching function.

• Reactive systems can be partitioned into:

plant

sensors

actuators

controller

• “In constructing a real-time system the aim is to control a physically existing
environment, the plant, in such a way that the controlled plant satisfies all
desired (timing) requirements.”



Real-Time and Hybrid Systems
–

1
–

2
0

17
-1

0
-1

7
–

S
rt

d
e

f
–

15/49

• A Real-Time System is a reactive system which,
for certain inputs,
has to compute the corresponding outputs within given time bounds.

• A Hybrid System is a real-time system consisting of continuous and discrete
components. The continuous components are time-dependent (!) physical
variables ranging over a continuous value set.

Reactive Systems

Real-Time Systems

Hybrid Systems

• A system is called Safety Critical
if and only if a malfunction can cause loss of goods, money, or even life.



Another Definition Douglass (1999)

–
1

–
2

0
17

-1
0

-1
7

–
S

rt
d

e
f

–

16/49

• “A real-time system is one
that has performance deadlines on its computations and actions.”

• Sometimes distinguished:

• “Hard deadlines: performance requirements
that absolutely must be met each and every event or time mark.” (→ this lecture)

“(Early / late data can be bad data.)”

• “Soft deadlines: for instance about average response times.”

“(Early / late data is still good data.)”

• Design Goal:

A timely system, i.e. one which is meeting its performance requirements.

• Note: performance can in general be measured by any unit of quantities:

• (discrete) number of steps or processor instructions,

• (discrete or continuous) number of seconds, (→ this lecture)

• etc.



Example: Airbag Controller
–

1
–

2
0

17
-1

0
-1

7
–

S
ai

rb
ag

–

17/49

D
ai

m
le

rC
h

ry
sl

e
r

A
G

,C
C

B
Y

-S
A

3
.0

Controller requirement: “When a crash is detected, fire the airbag.”

• When firing too early: airbag ineffective.

• When firing too late: additional threat.

Say, 300ms (plus/minus small ε) after a crash is the right™ time to fire.

Then the precise requirement is

“When a crash is detected at time t, fire the airbag at t+ 300ms± ε.”



Example: Airbag Controller
–

1
–

2
0

17
-1

0
-1

7
–

S
ai

rb
ag

–

17/49
D

ai
m

le
rC

h
ry

sl
e

r
A

G
,

C
C

B
Y

-S
A

3
.0

Controller requirement: “When a crash is detected, fire the airbag.”

• When firing too early: airbag ineffective.

• When firing too late: additional threat.

Say, 300ms (plus/minus small ε) after a crash is the right™ time to fire.

Then the precise requirement is

“When a crash is detected at time t, fire the airbag at t+ 300ms± ε.”

What is the plant, what is the controller?

plant

sensors

actuators

controller



Example: Gas Burner
–

1
–

2
0

17
-1

0
-1

7
–

S
ga

sb
u

rn
e

r
–

18/49

gas valve

flame sensor

ignition

Where is the plant, where is the controller?

plant

sensors

actuators

controller

westphal
Bleistift

westphal
Bleistift



Example: Gas Burner
–

1
–

2
0

17
-1

0
-1

7
–

S
ga

sb
u

rn
e

r
–

18/49

gas valve

flame sensor

ignition

• A situation where the gas valve is open but there is no flame is called leakage.

• Leakage is practically unavoidable:

• for ignition, first open valve,

• then ignite the available gas;

• ignition may fail. . .

• Leakage is safety critical:

Igniting large amounts of leaked gas may lead to a dangerous explosion.

• Requirement: Leakage phases should have a limited duration.



Sketch of the Methodology: Gas Burner Example
–

1
–

2
0

17
-1

0
-1

7
–

S
ga

sb
u

rn
e

r
–

19/49

• Requirements

• At most 5% of any at least 60s long interval amounts to leakage.

• Reflective Design

• Time intervals with leakage last at most 1s.

• After each leak, wait 30s before opening valve again.

• Constructive Design

• PLC Automaton:
(open valve for 0.5s;

ignite;

if no flame after 0.1s close valve)

• Implementation

• IEC 61131-3 program

gas valve

flame sensor

ignition

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Example: Wireless Fire Alarm System
–

1
–

2
0

17
-1

0
-1

7
–

S
w

fa
s

–

20/49

(Arenis et al., 2016)

• Wireless fire alarm systems
are regulated by
European Norm EN-54, Part 25.

• EN 54-25 states the following
requirements:

(i) The loss of the ability of the system to transmit a signal
from a component to the central unit is detected in less than 300 seconds
and displayed at the central unit within 100 seconds thereafter.

(ii) Out of exactly ten alarms occurring simultaneously, the first should be displayed
at the central unit within 10 seconds and all others within 100 seconds.

(iii) There must be no spurious displays of events at the central unit.

(iv) The above requirements must hold as well
in the presence of radio interference by other users of the frequency band.
Radio interference by other users of the frequency band
is simulated by a jamming device specified in the standard.



Content
–

1
–

2
0

17
-1

0
-1

7
–

S
co

n
te

n
t

–

21/49

• Introduction

• a software engineering perspective

• a theoretical computer science perspective

• Real-Time Systems

• vs. reactive systems

• vs. hybrid systems

• safety-critical systems

• examples

• Lecture Content Overview

• and non-content

• Formalia

• times/dates, procedures, exam

• A Formal Model of Real-Time Behaviour

• state variables / observables

• evolution / behaviour

westphal
Bleistift



Content Overview

–
1

–
2

0
17

-1
0

-1
7

–
m

ai
n

–

22/49



Content
–

1
–

2
0

17
-1

0
-1

7
–

S
n

o
n

co
n

te
n

t
–

23/49

Introduction

• Observables and Evolutions

• Duration Calculus (DC)

• Semantical Correctness Proofs

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• TA model-checking

• Extended Timed Automata

• Undecidability Results

obs : Time → D(obs) 〈obs0, ν0〉, t0
λ0−→ 〈obs1, ν1〉, t1 . . .

• Automatic Verification...

...whether a TA satisfies a DC formula, observer-based

• Recent Results:

• Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or . . .



Tying It All Together
–

1
–

2
0

17
-1

0
-1

7
–

S
n

o
n

co
n

te
n

t
–

24/49

abstraction
level

formal description
language I

semantic
integration

automatic
verification

formal descr.
language II

Require-
ments

Duration
Calculus

Constraint
Diagrams

DC
timed

automata
Live Seq.

Charts

satisfied by ⇒ ‖

Designs PLC-Automata DC timed
automata

Programs C code
PLC code

logical

semantics

logical

semantics

compiler

(

equiv.

equiv.

equiv.

operational semantics

operational semantics

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Non-Content
–

1
–

2
0

17
-1

0
-1

7
–

S
n

o
n

co
n

te
n

t
–

25/49

• Worst Case Execution Time

• Over-simplified airbag controller program:

while (true) do

poll_sensors();

if (crash) tmr.start(300ms);

if (tmr.elapsed()) fire := 1;

update_actuators();

od

• The execution of poll_sensors() and update_actuators()
also takes time! (And we have to consider it!)

• Not in lecture:
How to determine the WCET of, for instance, C code.
(A science of its own.)



Non-Content
–

1
–

2
0

17
-1

0
-1

7
–

S
n

o
n

co
n

te
n

t
–

26/49

Scheduling

• A bit less over-simplified airbag controller:

Sens Controller Act

Bus

m/s

• Not in lecture: Specialised methods to determine...

• ...whether the bus provides sufficient bandwidth.

• ...whether the Real-Time OS controlling CPU ‘Controller’
schedules the airbag control code in time.

• ...how to distribute tasks over multiple CPUs.

• etc.

(Also a science of its own.)



Content
–

1
–

2
0

17
-1

0
-1

7
–

S
co

n
te

n
t

–

27/49

• Introduction

• a software engineering perspective

• a theoretical computer science perspective

• Real-Time Systems

• vs. reactive systems

• vs. hybrid systems

• safety-critical systems

• examples

• Lecture Content Overview

• and non-content

• Formalia

• times/dates, procedures, exam

• A Formal Model of Real-Time Behaviour

• state variables / observables

• evolution / behaviour

westphal
Bleistift



Formalia

–
1

–
2

0
17

-1
0

-1
7

–
m

ai
n

–

28/49



Formalia: Event
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

29/49

• Lecturer: Dr. Bernd Westphal
• Support: Liridon Musliu

• Homepage:

http://swt.informatik.uni-freiburg.de/teaching/WS2017-18/rtsys

• ILIAS course: see homepage.

• Location:

• Tuesday, Thursday: here



Formalia: Dates/Times, Break
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

30/49

• Schedule:

Thursday, week N : 14:00–16:00 lecture (exercises M online)

Tuesday, week N + 1: 14:00–16:00 lecture
Thursday, week N + 1: 14:00–16:00 lecture

Monday, week N + 2: 14:00 (exercises M early turn-in)
Tuesday, week N + 2: 14:00 (exercises M late turn-in)
Tuesday, week N + 2: 14:00–16:00 tutorial
Thursday, week N + 2: 14:00–16:00 lecture (exercises M + 1 online)

With a prefix of lectures, with public holidays; see homepage for details.

• Break:

• Unless a majority objects now,
we’ll have a 10 min. break in the middle of each event from now on.

·

14:15

15:00

15:45

vs. ·

14:15

15:00
15:10

15:55

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Formalia: Lectures
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

31/49

• Course language: English
(slides/writing, presentation, questions/discussions)

• Presentation:
half slides/half on-screen hand-writing — for reasons

• Script/Media:

• slides without annotations on homepage,
trying to put them there before the lecture

• slides with annotations on homepage, 2-up for printing,
typically soon after the lecture

• recordings in ILIAS course with max. 1 week delay.

• Interaction:
absence often moaned but it takes two,
so please ask/comment immediately



Formalia: Exercises and Tutorials
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

32/49

• Schedule/Submission:

• Recall: exercises online on Thursday before (or soon after) lecture,
regular turn in on corresponding tutorial day until 14:00 local time

• should work in groups of max. 3, clearly give names on submission

• please submit electronically by Mail to me (cf. homepage),
some LATEX styles on homepage; paper submissions are tolerated

• Didactical aim:

• deal more extensively with notions from lecture (easy)

• explore corner cases or alternatives (medium)

• evaluate/appreciate approaches (difficult)

• additional difficulty: imprecise/unclear tasks — by intention

• True aim: most complicated rating system ever, namely two ratings

• Good-will (“reasonable solution with knowledge before tutorial”)

• Evil/Exam (“reasonable solution with knowledge after tutorial”)

10% bonus for early submission.

westphal
Bleistift

westphal
Bleistift



Formalia: Exam
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

33/49

• Exam Admission:

50% of the maximum possible non-bonus good-will points in total
are sufficient for admission to exam

• Exam Form: (oral or written) not yet decided



Formalia: Evaluation
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

34/49

Speaking of grading and examination...

• Mid-term Evaluation:
We will have a mid-term evaluation1, but we’re always interested in
comments/hints/proposals concerning form or content.

1that is, students are asked to evaluate lecture, lecturer, and tutor...



Formalia: Questions
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

35/49

• Questions:

• “online”:

(i) ask immediately or in the break

• “offline”:

(i) try to solve yourself

(ii) discuss with colleagues

(iii)

• Exercises: contact tutor via ILIAS forum or by mail

• Rest: contact lecturer by mail (cf. homepage)
or just drop by: Building 52, Room 00-020



Formalia
–

1
–

2
0

17
-1

0
-1

7
–

S
fo

rm
al

ia
–

36/49

Speaking of questions:

Any questions so far. . . ?



Formalia: Literature (offered as eBook by UB)

–
1

–
2

0
17

-1
0

-1
7

–
S

fo
rm

al
ia

–

37/49



Tell Them What You’ve Told Them. . .
–

1
–

2
0

17
-1

0
-1

7
–

S
tt

w
y

tt
–

47/49

• Real-Time Systems. . .

• . . . have to compute outputs for certain inputs
within (quantitative!) time bounds,

• . . . are often safety critical,
then construction requires a high degree of precision.

• (discrete) reactive system: without time (other lecture),

• hybrid system:
other continous components than clocks (other lecture).

• The lecture presents approaches
for the precise development of real-time sytems,

• logic-based: Duration Calculus

• automata-based: Timed Automata

• Non-content: (other lectures)

• Real-time operating systems,

• Scheduling,

• Worst-case execution time, etc..



References

–
1

–
2

0
17

-1
0

-1
7

–
m

ai
n

–

48/49



References
–

1
–

2
0

17
-1

0
-1

7
–

m
ai

n
–

49/49

Arenis, S. F., Westphal, B., Dietsch, D., Muñiz, M., Andisha, A. S., and Podelski, A. (2016). Ready for testing:
ensuring conformance to industrial standards through formal verification. Formal Asp. Comput., 28(3):499–527.

Douglass, B. P. (1999). Doing Hard Time. Addison-Wesley.

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.


	Content
	Introduction: Software Engineering Perspective
	Recall: Software Engineering
	Recall: Formal Methods
	Necessary Ingredients
	Example (Un-timed): Traffic Lights
	Necessary Ingredients
	Example (Timed): Traffic Lights
	Content

	Introduction: Theoretical Computer Science Perspective
	Logics and Automata for Timed Behaviour
	Content
	Reactive Systems
	Real-Time and Hybrid Systems
	Another Definition Douglass1999a
	Example: Airbag Controller
	Example: Gas Burner
	Sketch of the Methodology: Gas Burner Example
	Example: Wireless Fire Alarm System
	Content

	Content Overview
	Content
	Tying It All Together
	Non-Content
	Non-Content
	Content

	Formalia
	Formalia: Event
	Formalia: Dates/Times, Break
	Formalia: Lectures
	Formalia: Exercises and Tutorials
	Formalia: Exam
	Formalia: Evaluation
	Formalia: Questions
	Formalia
	Formalia: Literature (offered as eBook by UB)
	Content

	A Formal Model of Real-Time Behaviour
	State Variables (or Observables)
	System Evolution over Time
	What's the time?
	Example: Gas Burner
	Example: Gas Burner
	Levels of Detail
	Content
	Tell Them What You've Told Them…

	References
	References




