
–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

Real-Time Systems

Lecture 2: Timed Behaviour

2017-10-19

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

2/31

Content

–
2

–
2

0
17

-1
0

-1
9

–
S

co
n

te
n

t
–

3/31

• A formal model of real-time behaviour

• state variables (or observables)

• evolution over time (or behaviour

• discrete time vs.
continous (or dense) time

• Timing diagrams

• Formalising requirements

• with available tools:
logic and analysis

• concise? convenient?

• Correctness of designs wrt. requirements

• Classes of timed properties

• safety and liveness properties

• bounded response and duration properties

• An outlook to Duration Calculus

A Formal Model of Real-Time Behaviour

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

4/31

State Variables (or Observables)

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

5/31

• We assume that the real-time systems we consider are characterised
by a finite (!) set of state variables (or observables)

obs1, . . . , obsn

each associated with a set D(obsi), the domain of obs i, 1 ≤ i ≤ n.

• Example: gas burner
gas valve

flame sensor

ignition

• G

State Variables (or Observables)

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

5/31

• We assume that the real-time systems we consider are characterised
by a finite (!) set of state variables (or observables)

obs1, . . . , obsn

each associated with a set D(obsi), the domain of obs i, 1 ≤ i ≤ n.

• Example: gas burner
gas valve

flame sensor

ignition

• G , D(G) = {0, 1} — domain value 0 for G models “valve closed” (value 1: “valve open”)

(shorthand notation: G : {0, 1})

• F : {0, 1} — domain value 0 models “no flame sensed” (value 1: “flame sensed”)

• I : {0, 1} — domain value 0 models “ignition device disabled” (value 1: “ignition enabled”)

• H : {0, 1} — domain value 0 models “no heating request sensed” (value 1: “heating request”)

Levels of Detail

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

6/31

We can describe a real-time system at various levels of detail
by choosing an appropriate domain for each observable.

For example,

• if we need to model a gas valve with different positions
(not only “open” and “closed”), we could use

G : {0, 1, 2} (0: “fully closed”, 1: “half-open”, 2: “fully open”)

(Note: domains are never continuous in the lecture, otherwise it’s a hybrid system!)

• if the thermostat (sending heating requests) and the gas burner controller
are connected via a bus and exchange messages from Msg , use

B : Msg
∗

to model gas burner controller’s receive buffer as a finite sequence of messages from Msg .

• etc.

• Choice of observables and their domain is a creative (modelling) act.

A choice is good if it conveniently serves the modelling purpose.

System Evolution over Time

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

7/31

• One possible evolution (over time), or: behaviour, of the considered real-time
system is represented as a function

π : Time → D(obs1)× · · · × D(obsn).

where Time is the time domain (→ in a minute).

• If (and only if) observable obsi has value di ∈ D(obsi) at time t ∈ Time, 1 ≤ i ≤ n,
we set

π(t) = (d1, . . . , dn).

• For convenience, we use
obsi : Time → D(obsi)

to denote the projection of π onto the i-th component.

What’s the time?

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

8/31

• There are two main choices for the time domain Time:

• discrete time: Time = N0, the set of natural numbers.

• continuous
or dense time: Time = R

+

0 , the set of non-negative real numbers.

• Throughout the lecture we shall use the continuous time model and consider
discrete time as a special case.

Because

• plant models usually live in continuous time,

• we avoid too early introduction introduction of hardware considerations,

• Interesting view: continous-time is a well-suited abstraction from the
discrete-time realms induced by clock-cycles etc.

Example: Gas Burner

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

9/31

An evolution over time of the considered real-time
system is represented as function

π : Time → D(obs1)× · · · × D(obsn)

with π(t) = (d1, . . . , dn) if (and only if) observable
obsi has value di ∈ D(obsi) at time t ∈ Time, 1 ≤
i ≤ n.

For convenience: use obsi : Time → D(obsi).

gas valve

flame sensor

ignition

π :

Time

1
H

0

1
G

0

1
I

0

1
F

0

Example: Gas Burner

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

9/31

An evolution over time of the considered real-time
system is represented as function

π : Time → D(obs1)× · · · × D(obsn)

with π(t) = (d1, . . . , dn) if (and only if) observable
obsi has value di ∈ D(obsi) at time t ∈ Time, 1 ≤
i ≤ n.

For convenience: use obsi : Time → D(obsi).

gas valve

flame sensor

ignition

π :

Time

1
H

0

1
G

0

1
I

0

1
F

0

heating requested valve opened

try ignition

ignition fail

re-try ignition

ignition success

flame gone

valve closed

More Examples: Gas Burner Evolutions

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

10/31

gas valve

flame sensor

ignition

Time

1

0
H

1

0
G

1

0
I

1

0
F

One ignition failure, success, flame failure.
Time

1

0
H

1

0
G

1

0
I

1

0
F

No heating request, no heating.

Time

1

0
H

1

0
G

1

0
I

1

0
F

Reliable ignition, stable flame.
Time

1

0
H

1

0
G

1

0
I

1

0
F

Spontaneous flame, without request.

Representing Evolutions: Timing Diagram

–
2

–
2

0
17

-1
0

-1
9

–
S

m
o

d
e

l–

11/31

• An evolution (of a state variable) can be displayed in form of a timing diagram.

• For instance,

X :

observable

D(X)

y-axis label (may be omitted)

Time

d1

domain value

d2

for X : {d1, d2}.

• Multiple observables can be combined into a single timing diagram:

Time

1

0
H

1

0
G

1

0
I

1

0
F

Content

–
2

–
2

0
17

-1
0

-1
9

–
S

co
n

te
n

t
–

12/31

• A formal model of real-time behaviour

• state variables (or observables)

• evolution over time (or behaviour

• discrete time vs.
continous (or dense) time

• Timing diagrams

• Formalising requirements

• with available tools:
logic and analysis

• concise? convenient?

• Correctness of designs wrt. requirements

• Classes of timed properties

• safety and liveness properties

• bounded response and duration properties

• An outlook to Duration Calculus

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

13/31

Formalising Requirements:

A First Approach with Available Tools

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

14/31

Requirements, More Formally

–
2

–
2

0
17

-1
0

-1
9

–
S

p
ro

p
–

15/31

• A requirement ‘Req’ is a set of system behaviours (over observables) with the
pragmatics that,

• a design or implementation is correct wrt. ‘Req’

• if and only if all observed behaviours

• lie within the set ‘Req’.

• More formally,

• Req ⊆ (Time → D(obs1)× · · · × D(obsn))

(‘Req’ is the set of allowed evolutions),

• let
Des ⊆ (Time → D(obs1)× · · · × D(obsn))

be the behaviours of a design or implementation;

• ‘Des’ is correct wrt. ‘Req’ if and only if Des ⊆ Req.

• Inconvenient:
‘Req’ is usually an infinite set — we need ways to describe ‘Req’ conveniently.

Available Tools: Logic and Analysis

–
2

–
2

0
17

-1
0

-1
9

–
S

p
ro

p
–

16/31

• A requirement on gas burner controller behaviours could be

“do not ignite if the valve is closed”.

• Thus, a design ‘Des’ is correct if

• for all evolutions π ∈ Des,

• for all points in time t ∈ Time,

• it is not the case that I(t) = 1 and G(t) = 0.

(Recall: I(t) is the projection of π(t) on the I-component.)

• We can already formalise the above requirement using a logical formula:

F := ∀ t ∈ Time • ¬(I(t) = 1 ∧G(t) = 0).

• Then Req = {π : Time → D(H)×D(G)×D(I)×D(F) | π |= F}.

• In the following, we may identify a requirement and a logical formulae which
defines the requirement. We say “requirement F ”.

IAW: predicate logic formula F serves as concise description of requirement ‘Req’.

Example: Gas Burner

–
2

–
2

0
17

-1
0

-1
9

–
S

p
ro

p
–

17/31

Req :⇐⇒ ∀ t ∈ Time • ¬(I(t) ∧ ¬G(t))

π ∈ Req?

gas valve

flame sensor

ignition

π :

Time

1
H

0

1
G

0

1
I

0

1
F

0

Correctness

–
2

–
2

0
17

-1
0

-1
9

–
S

p
ro

p
–

18/31

• Let ‘Req’ be a requirement,

• ‘Des’ be a design, and

• ‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of
(

Time → ×n
i=1D(obsi)

)

.

We say

• ‘Des’ is a correct design (wrt. ‘Req’) if and only if

Des ⊆ Req.

• ‘Impl’ is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if

Impl ⊆ Des (or Impl ⊆ Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving validity of

Des =⇒ Req.

Content

–
2

–
2

0
17

-1
0

-1
9

–
S

co
n

te
n

t
–

19/31

• A formal model of real-time behaviour

• state variables (or observables)

• evolution over time (or behaviour

• discrete time vs.
continous (or dense) time

• Timing diagrams

• Formalising requirements

• with available tools:
logic and analysis

• concise? convenient?

• Correctness of designs wrt. requirements

• Classes of timed properties

• safety and liveness properties

• bounded response and duration properties

• An outlook to Duration Calculus

Classes of Timed Properties

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

20/31

Safety Properties

–
2

–
2

0
17

-1
0

-1
9

–
S

cl
as

se
s

–

21/31

• A safety property states that

something bad must never happen [Lamport].

• Example: “do not ignite if the valve is closed”

Req := ∀ t ∈ Time • ¬(I(t) ∧ ¬G(t)).

is a safety property.

• In general, a safety property is characterised as a property
that can be falsified in bounded time:

• If a gas burner controller does not satisfy ‘Req’,
there is an evolution π and a time t ∈ Time such that

¬(I(t) ∧ ¬G(t))

does not hold. All later times t′ > t do not make it better.

• But safety is not everything...

Liveness Properties

–
2

–
2

0
17

-1
0

-1
9

–
S

cl
as

se
s

–

22/31

• The simplest form of a liveness property states that

something good eventually does happen.

• Example: “heating requests are finally served”

∀ t ∈ Time • (H(t) ∧ ¬F (t)) =⇒ (∃ t′ ≥ t •G(t) ∧ I(t))

is a liveness property.

Note: a gas burner controller can guarantee that finally the valve is opened and
ignition is enabled — but a flame cannot be guaranteed.

• Note: liveness properties not falsified in finite time.

• if there is a heating request at time t, and at time t′ > t, the controller did not
enforce G(t) ∧ I(t), there may be a later time t′′ > t′ where the formula holds.

• With real-time systems, liveness is too weak...

Bounded Response Properties

–
2

–
2

0
17

-1
0

-1
9

–
S

cl
as

se
s

–

23/31

• A bounded response property states that

the desired reaction on an input occurs in time interval [b, e].

• Example: heating requests are served within 3 seconds ±ε

∀ t ∈ Time • (H(t) ∧ ¬F (t)) =⇒ (∃ t′ ∈ [t+ 3 s− ε, t+ 3 s+ ε] •G(t) ∧ I(t))

is a bounded liveness property.

Here, the interval is [b, e] = [t+ 3 s− ε, t+ 3 s+ ε];
it depends on the time t of the heating request.

• This property can again be falsified in finite time.

• With gas burners, this is still not everything...

By the Way: Convenience

–
2

–
2

0
17

-1
0

-1
9

–
S

cl
as

se
s

–

24/31

It is not so easy to read out

“Heating requests are served within 3 seconds ±ε.”

from (lengthy) formula

∀ t ∈ Time • (H(t) ∧ ¬F (t)) =⇒ (∃ t′ ∈ [t+ 3 s− ε, t+ 3 s+ ε] •G(t) ∧ I(t)).

The Duration Calculus formula

((⌈H ∧ ¬F ⌉ ; true) ∧ ⌈¬(G ∧ I)⌉) =⇒ 3− ε ≤ ℓ ≤ 3 + ε

is more concise (fewer symbols),

and considered easier to read out by some.

→ in a week.

Duration Properties

–
2

–
2

0
17

-1
0

-1
9

–
S

cl
as

se
s

–

25/31

• A duration property states that

• for observation interval [b, e] characterised by a condition A(b, e),

• the accumulated time

• in which the system is in a certain critical state characterised by condition C(t)

• has an upper bound u(b, e).

∀ b, e ∈ Time •A(e, b) =⇒

∫
e

b

C(t) dt ≤ u(b, e)

• Example: leakage in gas burner,

“At most 5% of any at least 60s long interval amounts to leakage.”

∀ b, e ∈ Time • (b ≤ e ∧ (e− b) ≥ 60) =⇒

∫
e

b

G(t) ∧ ¬F (t) dt ≤ 0.05 · (e− b)

is a duration property.

Duration Properties

–
2

–
2

0
17

-1
0

-1
9

–
S

cl
as

se
s

–

25/31

• A duration property states that

• for observation interval [b, e] characterised by a condition A(b, e),

• the accumulated time

• in which the system is in a certain critical state characterised by condition C(t)

• has an upper bound u(b, e).

∀ b, e ∈ Time •A(e, b) =⇒

∫
e

b

C(t) dt ≤ u(b, e)

• Example: leakage in gas burner,

“At most 5% of any at least 60s long interval amounts to leakage.”

∀ b, e ∈ Time • (b ≤ e ∧ (e− b) ≥ 60) =⇒

∫
e

b

G(t) ∧ ¬F (t) dt ≤ 0.05 · (e− b)

is a duration property.

• This property can again be falsified in finite time.

An Outlook to Duration Calculus (DC)

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

26/31

Duration Calculus: Preview

–
2

–
2

0
17

-1
0

-1
9

–
S

d
cp

re
vi

e
w

–

27/31

• Duration Calculus is an interval logic.

• Formulae are evaluated in an
(implicitly given) interval.

gas valve

flame sensor

ignition

• G,F, I,H : {0, 1}

• Define L : {0, 1} as G ∧ ¬F .
Strangest operators:

• almost everywhere — Example: ⌈G⌉

(Holds in a given interval [b, e] iff the gas valve is open almost everywhere.)

• chop — Example: (⌈¬I⌉ ; ⌈I⌉ ; ⌈¬I⌉) =⇒ ℓ ≥ 1

(Ignition phases last at least one time unit.)

• integral — Example: ℓ ≥ 60 =⇒ ∫ L ≤ ℓ

20

(At most 5% leakage time within intervals of at least 60 time units.)

Content

–
2

–
2

0
17

-1
0

-1
9

–
S

co
n

te
n

t
–

28/31

• A formal model of real-time behaviour

• state variables (or observables)

• evolution over time (or behaviour

• discrete time vs.
continous (or dense) time

• Timing diagrams

• Formalising requirements

• with available tools:
logic and analysis

• concise? convenient?

• Correctness of designs wrt. requirements

• Classes of timed properties

• safety and liveness properties

• bounded response and duration properties

• An outlook to Duration Calculus

Tell Them What You’ve Told Them. . .

–
2

–
2

0
17

-1
0

-1
9

–
S

tt
w

y
tt

–

29/31

• Evolutions over state variables

• are a (simple but powerful) formal model
of timed behaviour, and

• can be represented by timing diagrams.

• A requirements specification denotes
a set of desired behaviours.

• Example classes of properties are

• safety: something bad never happens,

• liveness: something good finally happens,

• bounded response: good things happen with deadlines,

• duration: critical conditions have limited duration.

• Real-time requirements can be formalised
using just logic and analysis.

But: these specifications easily become hard to read.

• Something more concise and more readable (?):
Duration Calculus (→ next week)

References

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

30/31

References

–
2

–
2

0
17

-1
0

-1
9

–
m

ai
n

–

31/31

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

