
–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

Real-Time Systems

Lecture 3: Duration Calculus I

2017-10-26

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

2/39

Content

–
1

–
2

0
17

-1
0

-1
7

–
S

n
o

n
co

n
te

n
t

–

23/49

Introduction

• Observables and Evolutions

• Duration Calculus (DC)

• Semantical Correctness Proofs

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• TA model-checking

• Extended Timed Automata

• Undecidability Results

obs : Time � D(obs) hobs0, �0i, t0
�0

�� hobs1, �1i, t1 . . .

• Automatic Verification...

...whether a TA satisfies a DC formula, observer-based

• Recent Results:

• Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or . . .

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

3/39

Duration Calculus: Preview

–
2

–
2

0
17

-1
0

-1
9

–
S

d
cp

re
vi

e
w

–

27/31

• Duration Calculus is an interval logic.

• Formulae are evaluated in an
(implicitly given) interval.

gas valve

�ame sensor

ignition

• G,F, I,H : {0, 1}

• Define L : {0, 1} as G � ¬F .
Strangest operators:

• almost everywhere — Example: �G�

(Holds in a given interval [b, e] iff the gas valve is open almost everywhere.)

• chop — Example: (�¬I� ; �I� ; �¬I�) =� � � 1

(Ignition phases last at least one time unit.)

• integral — Example: � � 60 =� � L � �

20

(At most 5% leakage time within intervals of at least 60 time units.)

Content

–
3

–
2

0
17

-1
0

-2
6

–
S

co
n

te
n

t
–

4/39

• Symbols

• predicate and function symbols

• state variables and domain values

• global (or logical) variables

• State Assertions

• syntax

• semantics

• Terms

• syntax

• rigid terms

• intervals

• semantics

• remarks

Duration Calculus: Syntax Overview

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

5/39

Duration Calculus: Overview

–
3

–
2

0
17

-1
0

-2
6

–
S

d
co

ve
rv

ie
w

–

6/39

We will introduce four syntactical categories (and abbreviations):

(i) Symbols:
p,q

︷ ︸︸ ︷

true, false,=, <,>,≤,≥, f, g, X, Y, Z, d, x, y, z,

(ii) State Assertions:
P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:
θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

Duration Calculus: Symbols

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

7/39

Symbols: Predicate Symbols

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

8/39

p,q
︷ ︸︸ ︷

true, false,=, <,>,≤,≥ , f, g, X, Y, Z, d, x, y, z,

• We assume a set of predicate symbols to be given, typical elements p, q.

S
y

n
ta

x

• Each predicate symbol p has an arity n ∈ N0; shorthand notation: p/n.

• A predicate symbol p/n is called a constant if and only if n = 0.

• In the following, we assume the following predicate symbols:

• constants: true , false . • binary (i.e. n = 2): =, <, >, ≤, ≥.

• Semantical domains: truth values B = {tt,ff}, and real numbers R.

S
e

m
an

ti
cs

(m
e

an
in

g
)

• The semantics of an n-ary predicate symbol p
is a function from R

n to B, denoted p̂, i.e. p̂ : Rn → B.

• For constants (arity n = 0) we have p̂ ∈ B.

• Examples:

• ˆtrue = tt, ˆfalse = ff ,

• =̂ : R×R → B, =̂(a, b) = tt, iff a = b, =̂(a, b) = ff , iff a 6= b.
=̂(3, 17) = ff , =̂(2, 2) = tt.

Once Again: Syntax vs. Semantics

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

9/39

• Predicate symbols are principally freely chosen, we could also consider the
following ones:

• ♥/1

• ❀/3

• geq/2

• To semantically work with a predicate symbol, we need to define a meaning.

One possible choice:

• ♥̂ : R → B

♥̂(a) =

{

tt , if a ∈ N and digit sum of a equals 27

ff , otherwise

• ❀̂ : R×R×R → B

❀̂(a, b, c) =

{

tt , if ax2 + bx+ c = 0 has at least one solution

ff , otherwise

• ˆgeq : R×R → B

ˆgeq(a, b) =

{

tt , if a ≥ b

ff , otherwise

Same Game: Function Symbols

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

10/39

true, false,=, <,>,≤,≥, f, g , X, Y, Z, d, x, y, z,

• We assume a set of function symbols to be given, typical elements f, g.

S
y

n
ta

x

• Each function symbol f has an arity n ∈ N0; shorthand notation: f/n.

• A function symbol f/n is called a constant if and only if n = 0.

• In the following, we assume the following function symbols:

• constants: i/0 for each i ∈ N0,

• binary (i.e. n = 2): +, ·.

• The semantics of an n-ary function symbol f

S
e

m
an

ti
cs

(m
e

an
in

g
)

is a function from R
n to R, denoted f̂ , i.e. f̂ : Rn → R.

• For constants (arity n = 0) we have f̂ ∈ R.

• Examples:

• 0̂ = 0 ∈ R, 2̂7 = 27 ∈ R,

• +̂ : R×R → R, +̂(a, b) = a+ b,
+̂(1, 2) = 3.

One More Time

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

11/39

To better distinguish syntax from semantics,
we could choose to work with the following symbols for natural numbers:

• Syntax:

• zero, one, two, . . . , twentyseven, . . .

(all with arity 0)

• Semantics:

• ˆzero = 0 ∈ R,

• ˆone = 1 ∈ R,

• ˆtwo = 2 ∈ R,

• . . . ,

• ˆtwentyseven = 27 ∈ R,

• . . .

One More Time

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

12/39

To better distinguish syntax from semantics,
we could choose to work with the following symbols for natural numbers:

• Syntax:

• 0, 1, 2, . . . , 27, . . .

(all with arity 0)

• Semantics:

• 0̂ = 0 ∈ R,

• 1̂ = 1 ∈ R,

• 2̂ = 2 ∈ R,

• . . . ,

• 2̂7 = 27 ∈ R,

• . . .

Symbols: State Variables and Domain Values

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

13/39

true, false,=, <,>,≤,≥, f, g, X, Y, Z , d , x, y, z,

• We assume a set ‘Obs’ of state variables or observables, typical elements X,Y, Z .

• Each state variable X has a finite (semantical) domain D(X) = {d1, . . . , dn}.

• A state variable with domain {0, 1} is called boolean observable.

• For each domain {d1, . . . , dn} of a state variable in ‘Obs’ we assume

• symbols d1, . . . , dn

• with d̂i = di, 1 ≤ i ≤ n.

• Example:

• state variable F (“flame sensor”), domain D(F) = {0, 1},

symbols 0, 1 with 0̂ = 0 ∈ N0, 1̂ = 1 ∈ N0.

• state variable T (“traffic lights”), domain D(T) = {red, green},

symbols red, green with with ˆred = red ∈ D(T), ˆgreen = green ∈ D(T).

Interpretation of State Variables

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

14/39

• The last semantical domain we consider is

• the set Time of points in time,

• mostly, Time = R
+

0 (continuous / dense),
sometimes Time = N0 (discrete time).

• The semantics of a state variable is time-dependent.

It is given by an interpretation I , i.e. a mapping

I : Obs → (Time → D), D =
⋃

X∈Obs

D(X),

assigning to each state variable X ∈ Obs a function

I(X) : Time → D(X)

such that I(X)(t) ∈ D(X) denotes the value that X has at time t ∈ Time.

• For convenience, we shall abbreviate I(X) to XI .

Evolutions over Time vs. Interpretation of State Variables

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

15/39

• Let Obs = {obs1, . . . , obsn} be a set of state variables.

• Evolution (over time) of Obs:

π : Time → D(obs1)× · · · × D(obsn).

• Interpretation of Obs:
I : Obs → (Time → D).

• Both, π and I , represent the same timed behaviour if,

• for all t ∈ Time,

• I(obs i)(t) = π(t) ↓ i, 1 ≤ i ≤ n, or

• π(t) = (I(obs1)(t), . . . , I(obsn)(t)) = (obs1I (t), . . . , obsnI
(t)).

Example: Evolutions vs. Interpretation of State Variables

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

16/39

π :

Time
t

1

0
H

1

0
G

1

0
I

1

0
F

• obs1 = H , obs2 = G, obs3 = I , obs3 = F

• π(t) = (1, 1, 0, 1), I(H)(t) = HI(t) = π(t) ↓ 1 = 1,
I(I)(t) = II(t) = π(t) ↓ 3 = 0,

• I : Obs → (Time → D):

H 7→

Time

1

0

G 7→

Time

1

0

I 7→

Time

1

0

F 7→

Time

1

0

Predicate / Function Symbols vs. State Variables

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

17/39

true, false,=, <,>,≤,≥, f, g, X, Y, Z, d, x, y, z,

Note:

• The choice of function and predicate symbols introduced earlier, i.e.

• true, false,=, <,>,≤,≥,

• 0, 1, . . . ,

• +, ·

and their semantics, i.e.

• ˆtrue is the truth value tt ∈ B,

• =̂ : R2 → B is the equality relation on real numbers,

• 0̂ is the (real) number zero from R,

• +̂ : R2 → R is the addition function on real numbers,

is fixed throughout the lecture.

• The choice of observables and their domains

depends on the system we want to describe.

Symbols: Global Variables

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

18/39

true, false,=, <,>,≤,≥, f, g, X, Y, Z, d, x, y, z ,

• We assume a set ‘GVar’ of global (or logical) variables, typical elements x, y, z.

• The semantics of a global variable is given by a valuation, i.e. a mapping

V : GVar → R

assigning to each global variable x ∈ GVar a real number V(x) ∈ R.

We use Val to denote the set of all valuations, i.e. Val = (GVar → R).

Global variables are fixed over time in system evolutions.

Symbols: Overview

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

y
m

b
–

19/39

Syntax Semantics
(meaning)

predicate symbols

true, false,=, <,>,≤,≥ ˆtrue = tt ∈ B, =̂ : R2 → B

function symbols

f/n, g f̂ : Rn → R

state variables

X,Y, Z I(X) : Time → D(X)

domain values

d d̂ ∈ D(X)

global variables

x, y, z V(x) ∈ R

Duration Calculus: State Assertions

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

20/39

Duration Calculus: Overview

–
3

–
2

0
17

-1
0

-2
6

–
S

d
co

ve
rv

ie
w

–

21/39

We will introduce four syntactical categories (and abbreviations):

(i) Symbols:
p,q

︷ ︸︸ ︷

true, false,=, <,>,≤,≥, f, g, X, Y, Z, d, x, y, z,

(ii) State Assertions:
P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:
θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

State Assertions: Syntax

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

ta
ss

–

22/39

• The set of state assertions is defined by the following grammar:

P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

where

• X ∈ Obs is a state variable,

• d denotes a value from X ’s domain,

We shall use P,Q,R to denote state assertions.

• Here, ‘0’, ‘1’, ‘=’, ‘¬’, and ‘∧’
are like keywords (or terminal symbols) in programming languages.

• Abbreviations:

• We shall write X instead of X = 1 if X is boolean, i.e. if D(X) = {0, 1},

• Assume the usual precedence: ¬ binds stronger than ∧

• Define ∨, =⇒ , ⇐⇒ as usual.

State Assertions: Examples

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

ta
ss

–

23/39

P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

Observables F,G, D(F) = {0, 1}, D(G) = {0, 1, 2}.

• 0

• F = 1

• F

• ¬(F = 1)

• ¬F

• G

• G = 2, F = 2

• F = G

• F = 1 ∧G = 1

• ¬F = 1 ∧G = 1

• ¬(F = 1 ∧G = 1), (¬F) = 1 ∧G = 1, (¬F = 1) ∧G = 1

State Assertions: Semantics

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

ta
ss

–

24/39

• The semantics of state assertion P is a function

IJP K : Time → {0, 1},

i.e., IJP K(t) denotes the truth value of P at time t ∈ Time.

• The value IJP K(t) is defined inductively over the structure of P :

IJ0K(t) = 0,

IJ1K(t) = 1,

IJX = dK(t) =

{

1 , if XI = d

0 , otherwise,

IJ¬P1K(t) = 1− IJP1K(t)

IJP1 ∧ P2K(t) =

{

1 , if IJP1K(t) = IJP2K(t) = 1

0 , otherwise,

State Assertions: Notes

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

ta
ss

–

25/39

• If X is a boolean observer. the following equalities hold:

IJXK(t) = IJX = 1K(t) = I(X)(t) = XI(t).

• IJP K is also called interpretation of P .

We shall write PI as a shorthand notation.

• Here, the state assertions 0 and 1 are treated like boolean values (like tt and ff),
it will become clear in a minute, why 0, 1 is a better choice than tt and ff .

State Assertions: Example

–
3

–
2

0
17

-1
0

-2
6

–
S

d
cs

ta
ss

–

26/39

• Interpretation I of boolean observables G and F :

Time

1

0
GI

1

0
FI

0 1 1.2 2 3 4

• Consider state assertion L := G ∧ ¬F .

• LI(1.2) = 1, because

• LI(2) = 0, because

• Interpretation of L as timing diagram:

Time

1

0
LI

0 1 1.2 2 3 4

Duration Calculus: Terms

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

27/39

Duration Calculus: Overview

–
3

–
2

0
17

-1
0

-2
6

–
S

d
co

ve
rv

ie
w

–

28/39

We will introduce four syntactical categories (and abbreviations):

(i) Symbols:
p,q

︷ ︸︸ ︷

true, false,=, <,>,≤,≥, f, g, X, Y, Z, d, x, y, z,

(ii) State Assertions:
P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:
θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

Terms: Syntax

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

29/39

• Duration terms (or DC terms, or just terms) are defined by the following grammar:

θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

where

• x is a global variable from GVar,

• P is a state assertion, and

• f a function symbol (of arity n).

• ‘ℓ’ and ‘∫ ’ are like keywords (or terminal symbols) in programming languages.

• ℓ is called length operator, • ∫ is called integral operator.

• Notation: we may write function symbols in infix notation as usual,
i.e. we may write θ1 + θ2 instead of +(θ1, θ2).

Terms: Syntax

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

29/39

• Duration terms (or DC terms, or just terms) are defined by the following grammar:

θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

where

• x is a global variable from GVar,

• P is a state assertion, and

• f a function symbol (of arity n).

• ‘ℓ’ and ‘∫ ’ are like keywords (or terminal symbols) in programming languages.

• ℓ is called length operator, • ∫ is called integral operator.

• Notation: we may write function symbols in infix notation as usual,
i.e. we may write θ1 + θ2 instead of +(θ1, θ2).

Definition 1. [Rigid]

A term without length and integral operators is called rigid.

Towards Semantics of Terms: Intervals

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

30/39

• Let b, e ∈ Time be points in time s.t. b ≤ e.

Then [b, e] denotes the closed interval {x ∈ Time | b ≤ x ≤ e}.

• We use ‘Intv’ to denote the set of closed intervals in the time domain, i.e.

Intv := {[b, e] | b, e ∈ Time}.

• Closed intervals of the form [b, b] are called point intervals.

Terms: Semantics

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

31/39

• The semantics of a term θ is a function

IJθK : Val× Intv → R,

that is, IJθK maps a pair consisting of a valuation and an interval to a real number.

• IJθK(V , [b, e]) is called

• the value (or interpretation) of θ

• under interpretation I and valuation V

• in the interval [b, e].

• The value IJθK(V , [b, e]) is defined inductively over the structure of θ:

IJxK(V , [b, e]) = V(x),

IJℓK(V , [b, e]) = e− b,

IJ∫ P K(V , [b, e]) =

∫ e

b

PI(t) dt ,

IJf(θ1, . . . , θn)K(V , [b, e]) = f̂(IJθ1K(V , [b, e]), . . . , IJθnK(V , [b, e])),

Terms: Example

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

32/39

V(x) = 20.

Time

1

0
LI

0 1 2 3 4

Consider the term θ = x · ∫ L.

• IJθK(V , [0.5, 3.25]) = IJ·(x, ∫ L)K(V , [0.5, 3.25])

= ·̂ (IJxK(V , [0.5, 3.25]), IJ∫ LK(V , [0.5, 3.25]))

= ·̂ (V(x), IJ∫ LK(V , [0.5, 3.25]))

= ·̂ (20, IJ∫ LK(V , [0.5, 3.25]))

= ·̂

(

20,

∫ 3.25

0.5

LI(t)dt

)

= ·̂ (20, 1.25) = 20 · 1.25 = 25

• IJθK(V , [1.5, 1.5]) = 0

Terms: Is the Semantics Well-defined?

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

33/39

• So, IJ∫ P K(V , [b, e]) is

∫ e

b

PI(t) dt — but does the integral always exist?

• IOW: is there a PI which is not (Riemann-)integrable? Yes. For instance

PI(t) =

{

1 , if t ∈ Q

0 , if t /∈ Q

• To exclude such functions, DC considers only interpretations I satisfying the
following condition of finite variability:

For each state variable X and each interval [b, e] there is
a finite partition of [b, e] such that the interpretation
XI is constant on each part.

Thus a function XI is of finite variability if and only if, on each interval [b, e],
the function XI has only finitely many points of discontinuity.

Terms: Remarks

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

34/39

Remark 2.5. The semantics IJθK of a term is insensitive against changes
of the interpretation I at individual time points.

More formally:

• Let I1, I2 be interpretations of Obs such that I1(X)(t) = I2(X)(t) for all X ∈ Obs

and all t ∈ Time \ {t0, . . . , tn}.
Then I1JθK(V , [b, e]) = I2JθK(V , [b, e]) for all terms θ and intervals [b, e].

Remark 2.6. The semantics IJθK(V , [b, e]) of a rigid term does not depend
on the interval [b, e].

Syntax / Semantics Overview

–
3

–
2

0
17

-1
0

-2
6

–
S

d
ct

e
rm

–

35/39

Syntax Semantics
(meaning)

predicate symbols

true, false,=, <,>,≤,≥ ˆtrue = tt ∈ B, =̂ : R2 → B

function symbols f/n, g f̂ : Rn → R

state variables X,Y, Z I(X) : Time → D(X)

domain values d d̂ ∈ D(X)

global variables x, y, z V(x) ∈ R

state assertions P IJP K : Time → {0, 1}

IJP K(t) ∈ {0, 1}

terms θ IJθK : Val× Intv → R

IJθK(V , [b, e]) ∈ R

Content

–
3

–
2

0
17

-1
0

-2
6

–
S

co
n

te
n

t
–

36/39

• Symbols

• predicate and function symbols

• state variables and domain values

• global (or logical) variables

• State Assertions

• syntax

• semantics

• Terms

• syntax

• rigid terms

• intervals

• semantics

• remarks

Tell Them What You’ve Told Them. . .

–
3

–
2

0
17

-1
0

-2
6

–
S

tt
w

y
tt

–

37/39

• State assertions over

• state variables (or observables), and

• predicate symbols

are evaluated at points in time.

The semantics of a state assertion is a truth value.

• Terms are evaluated over intervals and can

• measure the accumulated duration of a state assertion,

• measure the length of intervals, and

• use function symbols.

The semantics of a term is a real number.

• The value of rigid terms
is independent from the considered interval.

• The semantics of terms is insensitive
against changes at finitely many points in time.

References

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

38/39

References

–
3

–
2

0
17

-1
0

-2
6

–
m

ai
n

–

39/39

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

