Real-Time Systems

Lecture 3: Duration Calculus I

2017-10-26

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

Introduction

- Observables and Evolutions - Timed Automata (TA), Uppaal
- Duration Calculus (DC)
- Semantical Correctness Proofs - Region/Zone-Abstraction
- DC Decidability
- TA model-checking
- DC Implementables
- Extended Timed Automata
- PLC-Automata

$$
o b s: \text { Time } \rightarrow \mathscr{D}(o b s)
$$

$$
\left\langle o b s_{0}, \nu_{0}\right\rangle, t_{0} \xrightarrow{\lambda_{0}}\left\langle o b s_{1}, \nu_{1}\right\rangle, t_{1} \ldots
$$

- Automatic Verification.. ...whether a TA satisfies a DC formula, observer-based
- Recent Results:
- Timed Sequence Diagrams, or Quasi-equal Clocks, or Automatic Code Generation, or .

Duration Calculus: Preview

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Strangest operators: โForm 7

- almost everywhere - Example: $\lceil G\rceil$ (Holds in a given interval $[b, e]$ iff the gas valve is open almost everywhere.)
- chop-' Example: $(\lceil\neg I\rceil ;\lceil I\rceil ;\lceil\neg I\rceil) \Longrightarrow \ell \geq 1$ (Ignition phases last at least one time unit.)
- integral - Example: $\ell \geq 60 \Longrightarrow \int L \leq \frac{\ell}{20}$

(At most 5% leakage time within intervals of at least 60 time units.)

```
- Symbols
    predicate and function symbols
    state variables and domain values
    global (or logical) variables
```

- State Assertions
 - syntax
 - semantics
- Terms
- syntax
- rigid terms
- intervals
- semantics
- \bullet remarks

Duration Calculus: Syntax Overview

Duration Calculus: Overview

We will introduce four syntactical categories (and abbreviations):
(i) Symbols:
(ii) State Assertions:
(iii) Terms:
(iv) Formulae:

(v) Abbreviations:
$\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.$

Duration Calculus: Symbols

Symbols: Predicate Symbols

p, q
true, false $=,<,>, \leq, \geq, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z$,

- We assume a set of predicate symbols to be given, typical elements p, q.
- Each predicate symbol p has an arity $n \in \mathbb{N}_{0} ; \quad$ shorthand notation: p / n.
- A predicate symbol p / n is called a constant if and only if $n=0$.
- In the following, we assume the following predicate symbols:
- constants: true, false. - binary (i.e. $n=2$): $=,<,>, \leq, \geq$.
- Semantical domains: truth values $\mathbb{B}=\{\mathrm{tt}, \mathrm{ff}\}$, and real numbers \mathbb{R}.
- The semantics of an n-ary predicate symbol p is a function from \mathbb{R}^{n} to \mathbb{B}, denoted \hat{p}, i.e. $\hat{p}: \mathbb{R}^{n} \rightarrow \mathbb{B}$.
- For constants (arity $n=0$) we have $\hat{p} \in \mathbb{B}$.
- Examples:
- trüe $=\mathrm{tt}$, fâlse $=\mathrm{ff}$,
- $\hat{=}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{B}, \quad \hat{=}(a, b)=\mathrm{tt}$, iff $a=b, \quad \hat{=}(a, b)=\mathrm{ff}$, iff $a \neq b$. $\hat{=}(3,17)=\mathrm{ff}, \quad \hat{=}(2,2)=\mathrm{tt}$.
- Predicate symbols are principally freely chosen, we could also consider the following ones:

- To semantically work with a predicate symbol, we need to define a meaning. One possible choice:

$$
\begin{aligned}
& \text { - } \hat{\wp}: \mathbb{R} \rightarrow \mathbb{B} \\
& \hat{\mathcal{O}}(a)= \begin{cases}\mathrm{tt} & , \text { if } a \in \mathbb{N} \text { and digit sum of } a \text { equals } 27 \\
\mathrm{ff} & , \text { otherwise }\end{cases} \\
& \text { - } \hat{\text { B }}: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{B} \\
& \hat{\hat{b}}(a, b, c)= \begin{cases}\mathrm{tt} & , \text { if } a x^{2}+b x+c=0 \text { has at least one solution } \\
\mathrm{ff} & , \text { otherwise }\end{cases} \\
& \text { - gêq: } \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{B} \rightarrow \text { nath. /semantics } \\
& \text { gêq }(a, b)= \begin{cases}\mathrm{tt} & , \mathrm{f} a \geq b \\
\mathrm{ff} & , \text { otherwise }\end{cases}
\end{aligned}
$$

Same Game: Function Symbols

$$
\text { true }, \text { false },=,<,>, \leq, \geq, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z
$$

- We assume a set of function symbols to be given, typical elements f, g.
- Each function symbol f has an arity $n \in \mathbb{N}_{0}$; shorthand notation: f / n.
- A function symbol f / n is called a constant if and only if $n=0$.
- In the following, we assume the following function symbols:
- The semantics of an n-ary function symbol f is a function from \mathbb{R}^{n} to \mathbb{R}, denoted \hat{f}, i.e. $\hat{f}: \mathbb{R}^{n}$
- For constants (arity $n=0$) we have $\hat{f} \in \mathbb{R}$.
- Examples:
- $\hat{0}=0 \in \mathbb{R}, \hat{27}=27 \in \mathbb{R}$,
- $\hat{\boldsymbol{t}}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \quad \hat{\boldsymbol{+}}(a, b)=a+b$, $\hat{*}(1,2)=3$.

To better distinguish syntax from semantics,
we could choose to work with the following symbols for natural numbers:

- Syntax:
- zero, one, two, ..., twentyseven, ...
(all with arity 0)

- Semantics:

- zero $=0 \in \mathbb{R}$,
- one $=1 \in \mathbb{R}$,
- $\mathrm{t} \hat{\mathrm{w}} \mathrm{o}=2 \in \mathbb{R}$,
- ...,
- twentŷseven $=27 \in \mathbb{R}$,
- ...

One More Time

To better distinguish syntax from semantics, we could choose to work with the following symbols for natural numbers:

- Syntax:

- $0,1,2, \ldots, 27, \ldots$
(all with arity 0)
- Semantics:
- $\hat{0}=0 \in \mathbb{R}$,
- $\hat{1}=1 \in \mathbb{R}$,
- $\hat{2}=2 \in \mathbb{R}$,
- ...,
- $\hat{27}=27 \in \mathbb{R}$,
\qquad

$$
\text { true, false },=,<,>, \leq, \geq, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z
$$

- We assume a set 'Obs' of state variables or observables, typical elements X, Y, Z.
- Each state variable X has a finite (semantical) domain $\mathcal{D}(X)=\left\{d_{1}, \ldots, d_{n}\right\}$.
- A state variable with domain $\{0,1\}$ is called boolean observable.
- For each domain $\left\{d_{1}, \ldots, d_{n}\right\}$ of a state variable in 'Obs' we assume
- symbols d_{1}, \ldots, d_{n}
- with $\hat{d}_{i}=d_{i}, 1 \leq i \leq n$.
- Example:
- state variable F ("flame sensor"), domain $\mathcal{D}(F)=\{0,1\}$, symbols 0,1 with $\hat{0}=0 \in \mathbb{N}_{0}, \hat{1}=1 \in \mathbb{N}_{0}$.
- state variable T ("traffic lights"), domain $\mathcal{D}(T)=\{$ red, green $\}$, symbols red, green with with red $=\operatorname{red} \in \mathcal{D}(T)$, grêen $=$ green $\in \mathcal{D}(T)$.

Interpretation of State Variables

- The last semantical domain we consider is
- the set Time of points in time,
- mostly, Time $=\mathbb{R}_{0}^{+}$(continuous / dense), sometimes Time $=\mathbb{N}_{0}$ (discrete time).
- The semantics of a state variable is time-dependent.

It is given by an interpretation \mathcal{I}, i.e. a mapping

$$
\mathcal{I}: \text { Obs } \rightarrow(\text { Time } \rightarrow \mathcal{D}), \quad \mathcal{D}=\bigcup_{X \in \text { Obs }} \mathcal{D}(X)
$$

assigning to each state variable $X \in$ Obs a function

$$
\mathcal{I}(X): \text { Time } \rightarrow \mathcal{D}(X)
$$

such that $\mathcal{I}(X)(t) \in \mathcal{D}(X)$ denotes the value that X has at time $t \in$ Time.

- For convenience, we shall abbreviate $\mathcal{I}(X)$ to $X_{\mathcal{I}}$.
- Let Obs $=\left\{o b s_{1}, \ldots, o b s_{n}\right\}$ be a set of state variables.
- Evolution (over time) of Obs:

$$
\pi: \text { Time } \rightarrow \mathcal{D}\left(o b s_{1}\right) \times \cdots \times \mathcal{D}\left(o b s_{n}\right)
$$

- Interpretation of Obs:

$$
\mathcal{I}: \text { Obs } \rightarrow(\text { Time } \rightarrow \mathcal{D})
$$

- Both, π and \mathcal{I}, represent the same timed behaviour if,
- for all $t \in \mathrm{Time}$,
- $\mathcal{I}\left(o b s_{i}\right)(t)=\pi(t) \downarrow i, \quad 1 \leq i \leq n$, or
- $\pi(t)=(\underbrace{\mathcal{I}\left(o b s_{1}\right)(t)}, \ldots, \underbrace{\left.\mathcal{I}\left(o b s_{n}\right)(t)\right)}=\left(o b s_{1_{\mathcal{I}}}(t), \ldots, o b s_{n_{\mathcal{I}}}(t)\right)$.

Example: Evolutions vs. Interpretation of State Variables

$\pi:$ Time $\rightarrow \mathcal{D}\left(X_{1}\right) \times \cdots \times \mathcal{D}\left(X_{n}\right)$

- $o b s_{1}=H, o b s_{2}=G, o b s_{3}=I, o b s_{3}=F$
- $\pi(t)=(1,1,0,1), \quad \mathcal{I}(H)(t)=H_{\mathcal{I}}(t)=\pi(t) \downarrow 1=1$, $\mathcal{I}(I)(t)=I_{\mathcal{I}}(t)=\pi(t) \downarrow 3=0$,
- $\mathcal{I}:$ Obs $\rightarrow($ Time $\rightarrow \mathcal{D})$:

$$
\text { true, false },=,<,>, \leq, \geq, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z
$$

Note:

- The choice of function and predicate symbols introduced earlier, i.e.
- true, false, $=,<,>, \leq, \geq$,
- $0,1, \ldots$,
- +,
and their semantics, i.e.
- true is the truth value $t t \in \mathbb{B}$,
- $\hat{=}: \mathbb{R}^{2} \rightarrow \mathbb{B}$ is the equality relation on real numbers,
- $\hat{0}$ is the (real) number zero from \mathbb{R},
- $\hat{+}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the addition function on real numbers,
is fixed throughout the lecture.

- The choice of observables and their domains

 depends on the system we want to describe.
Symbols: Global Variables

$$
\text { true }, \text { false },=,<,>, \leq, \geq, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z
$$

- We assume a set 'GVar' of global (or logical) variables, typical elements x, y, z.
- The semantics of a global variable is given by a valuation, i.e. a mapping

$$
\mathcal{V}: \text { GVar } \rightarrow \mathbb{R}
$$

assigning to each global variable $x \in G V a r$ a real number $\mathcal{V}(x) \in \mathbb{R}$.
We use Val to denote the set of all valuations, i.e. Val $=(G \operatorname{Var} \rightarrow \mathbb{R})$.
Global variables are fixed over time in system evolutions.

$$
\begin{gathered}
G V_{a r}=\{x, y\} \\
V_{1}=\{x \mapsto 0, y \mapsto 1\} \\
V_{2}=\{x \mapsto 3.14, y \mapsto 27\}
\end{gathered}
$$

Syntax	Semantics (meaning)
predicate symbols	true $=\mathrm{tt} \in \mathbb{B}, \hat{=}: \mathbb{R}^{2} \rightarrow \mathbb{B}$
true, false,$=,<,>, \leq, \geq$	$\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
function symbols	
$f / n, g$	$\mathcal{I}(X):$ Time $\rightarrow \mathcal{D}(X)$
state variables	$\hat{d} \in \mathcal{D}(X)$
X, Y, Z	$\mathcal{V}(x) \in \mathbb{R}$
domain values	

Duration Calculus: State Assertions

We will introduce four syntactical categories (and abbreviations):
(i) Symbols:

$$
\overbrace{\text { true }, \text { false },=,,<,>, \leq, \geq}^{p, q}, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z,
$$

(ii) State Assertions:

$$
P::=0|1| X=d\left|\neg P_{1}\right| P_{1} \wedge P_{2} \quad(P)
$$

(iii) Terms:

$$
\theta::=x|\ell| \int P\left|f\left(\theta_{1}, \ldots, \theta_{n}\right)\right\rangle(\theta)
$$

(iv) Formulae:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\neg F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \bullet F_{1}\right| F_{1} ; F_{2}(\not(F)
$$

(v) Abbreviations:

$$
\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.
$$

State Assertions: Syntax

- The set of state assertions is defined by the following grammar:

$$
P::=0|\underline{1}| X \equiv d\left|\neg P_{1}\right| P_{1} \wedge P_{2}
$$

where

- $X \in$ Obs is a state variable,
- d denotes a value from X 's domain,

We shall use P, Q, R to denote state assertions.

- Here, ' 0 ’, ‘ 1 ’, ‘=’, ‘ \neg ’, and ‘ \wedge ’ are like keywords (or terminal symbols) in programming languages.
- Abbreviations:
- We shall write X instead of $X=1$ if X is boolean, i.e. if $\mathcal{D}(X)=\{0,1\}$,
- Assume the usual precedence: \neg binds stronger than \wedge
- Define \vee, \Longrightarrow, \Longleftrightarrow as usual.

$$
P::=0|1| X=d\left|\neg P_{1}\right| P_{1} \wedge P_{2}
$$

Observables $F, G, \mathcal{D}(F)=\{0,1\}, \mathcal{D}(G)=\{0,1,2\}$.

- $0 \checkmark$
- $F=1 \checkmark$ (3)
$\{0,1,2\}$.
$X, D(X)=\{F=0\}$
$X=F=0 \quad \begin{aligned} & \text { state var.' } \\ & \text { dom. value } \\ & \text { state dssertion }\end{aligned}$
- $F \checkmark$ (3) + abbru.
- $\neg(F=1) \checkmark$ (4) (3)
- $\neg F \sqrt{ }$ (4) +abbr
- $G \mathbb{X} \quad(F=1)=(G=1) \times$
- $G=2, J \quad F=2 \mathbb{X}$
- $F=G \not \subset$ typing
- $F=1 \wedge G=1 \checkmark$ (s)
$((\neg(F=1) \wedge(G=1)) \triangleleft \nless$
$\bullet \neg(F=1 \wedge G=1), \quad(\neg F)=1 \wedge G=1, \quad(\neg(F=1) \wedge G=1 \checkmark$

State Assertions: Semantics

- The semantics of state assertion P is a function

$$
\mathcal{I} \llbracket P \rrbracket: \text { Time } \rightarrow\{0,1\}
$$

i.e., $\mathcal{I} \llbracket P \rrbracket(t)$ denotes the truth value of P at time $t \in$ Time.

- The value $\mathcal{I} \llbracket P \rrbracket(t)$ is defined inductively over the structure of P :

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{I} \llbracket 0 \rrbracket(t) & =0 \\
\mathcal{I} \llbracket \mathbb{1} \rrbracket(t) & =1 \\
\mathcal{I} \llbracket X \equiv d \rrbracket(t) & = \begin{cases}1, & \text { if } X_{I}(t)=\hat{d} \\
0, & \text { otherwise }\end{cases} \\
\begin{array}{l}
\text { base cases } \\
\begin{array}{l}
\text { induction } \\
\text { steps }
\end{array} \\
\mathcal{I} \llbracket \neg P_{1} \rrbracket(t)
\end{array} & =1-I \mathbb{I} P_{1} \rrbracket(t)
\end{aligned} \\
& \mathcal{I} \llbracket P_{1} \wedge P_{2} \rrbracket(t)= \begin{cases}1, & \text { if III} P_{i} \rrbracket(t)=1, i \in\{1,2\} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

- If X is a boolean observer. the following equalities hold:

$$
\begin{array}{cc}
\mathcal{I} \llbracket X \rrbracket(t)=\mathcal{I} \llbracket X=1 \rrbracket(t)=\mathcal{I}(X)(t)=X_{\mathcal{I}}(t) . \\
\text { abbre } & \text { buluan } \\
\text { valuer }(0,1) & \text { abbrev. }
\end{array}
$$

- $\mathcal{I} \llbracket P \rrbracket$ is also called interpretation of P.

We shall write $P_{\mathcal{I}}$ as a shorthand notation.

- Here, the state assertions 0 and 1 are treated like boolean values (like tt and ff), it will become clear in a minute, why 0,1 is a better choice than $t t$ and $f f$.

State Assertions: Example

- Interpretation \mathcal{I} of boolean observables G and F :

ITLD (1.2)

- Consider state assertion $\left.L:=G \wedge \neg F . \quad(G=1)_{\wedge \neg(F=1)}\right)$
- $L_{\mathcal{I}}(1.2)=1$, because

I【G $G \sim F \mathbb{J}(t)=1$ becare $I \mathbb{C} G \mathbb{J}(t)=I \mathbb{T} G=1 \mathbb{J}(t)$

- $L_{\mathcal{I}}(2)=0$, because

$$
=G_{I}(t)=1=1
$$

$I \mathbb{C}_{\bar{\tau}}=1 J(t)=\left(F_{I}(t)=1\right)=0$

- Interpretation of L as timing diagram:

Duration Calculus: Terms

Duration Calculus: Overview

We will introduce four syntactical categories (and abbreviations):
(i) Symbols:

$$
\overbrace{\text { true }, \text { false },=,<,>, \leq, \geq}^{p, q}, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z,
$$

(ii) State Assertions:

$$
P::=0|1| X=d\left|\neg P_{1}\right| P_{1} \wedge P_{2}
$$

(iii) Terms:

$$
\theta::=x|\ell| \int P \mid f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

(iv) Formulae:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\neg F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \bullet F_{1}\right| F_{1} ; F_{2}
$$

(v) Abbreviations:
$\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.$

- Duration terms (or DC terms, or just terms) are defined by the following grammar:

$$
\theta::=x|\ell| \int P \mid f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

where

- x is a global variable from GVar,
- f a function symbol (of arity n).
- P is a state assertion, and
- ' ℓ ' and ' \int ' are like keywords (or terminal symbols) in programming languages.
- ℓ is called length operator, $\quad \int$ is called integral operator.
- Notation: we may write function symbols in infix notation as usual, i.e. we may write $\theta_{1}+\theta_{2}$ instead of $+\left(\theta_{1} ; \theta_{2}\right)$.

$$
\begin{aligned}
& \text { prefix nownal } \\
& \text { form }
\end{aligned}
$$

Terms: Syntax

- Duration terms (or DC terms, or just terms) are defined by the following grammar:

$$
\theta::=x|\ell| \int P \mid f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

where

- x is a global variable from GVar,
- f a function symbol (of arity n).
- P is a state assertion, and
- ' ℓ ' and ' \int ' are like keywords (or terminal symbols) in programming languages.
- ℓ is called length operator,
- \int is called integral operator.
- Notation: we may write function symbols in infix notation as usual, i.e. we may write $\theta_{1}+\theta_{2}$ instead of $+\left(\theta_{1}, \theta_{2}\right)$.

Definition 1. [Rigid]
A term without length and integral operators is called rigid.

- Let $b, e \in$ Time be points in time s.t. $b \leq e$.

Then $[b, e]$ denotes the closed interval $\{x \in$ Time $\mid b \leq x \leq e\}$.

- We use 'Intv' to denote the set of closed intervals in the time domain, i.e.

$$
\text { Intv }:=\{[b, e] \mid b, e \in \text { Time }\} .
$$

- Closed intervals of the form $[b, b]$ are called point intervals.

Terms: Semantics

- The semantics of a term θ is a function

$$
\mathcal{I} \llbracket \theta \rrbracket: \text { Val } \times \operatorname{Intv} \rightarrow \mathbb{R},
$$

that is, $\mathcal{I} \llbracket \theta \rrbracket$ maps a pair consisting of a valuation and an interval to a real number.

- $\mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[b, e])$ is called
- the value (or interpretation) of θ
- under interpretation \mathcal{I} and valuation \mathcal{V}
- in the interval $[b, e]$.
- The value $\mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[b, e])$ is defined inductively over the structure of θ :

$$
\mathcal{V}(x)=20
$$

Consider the term $\theta=x \cdot \int L$.

$$
\left.\left.\begin{array}{rl}
& \mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[0.5,3.25])=\mathcal{I} \llbracket \cdot\left(x, \int L\right) \rrbracket(\mathcal{V},[0.5,3.25]) \\
=\hat{\cdot}\left(\quad \mathcal{I} \llbracket x \rrbracket(\mathcal{V},[0.5,3.25]), \quad \mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[0.5,3.25]) \quad\right) \\
=\hat{\cdot}\left(\quad \mathcal{V}(x), \quad \mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[0.5,3.25])\right) \\
=\hat{\cdot}\left(20, \quad \mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[0.5,3.25])\right) \\
=\hat{\cdot}\left(\begin{array}{c}
20,
\end{array} \int_{0.5}^{3.25} L_{\mathcal{I}}(t) d t\right.
\end{array}\right)=\hat{\cdot}\left(\begin{array}{lll}
20, & 1.25
\end{array}\right)=20 \cdot 1.25=25\right) ~ l
$$

$$
\text { - } \mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[1.5,1.5])=\mathbb{O}
$$

Terms: Is the Semantics Well-defined?

- So, $\mathcal{I} \llbracket \int P \rrbracket(\mathcal{V},[b, e\rfloor)$ is $\int_{b}^{e} P_{\mathcal{I}}(t) d t$ - but does the integral always exist?
- IOW: is there a $P_{\mathcal{I}}$ which is not (Riemann-)integrable? Yes. For instance

$$
P_{\mathcal{I}}(t)= \begin{cases}1 & \text {, if } t \in \mathbb{Q} \\ 0 & \text {, if } t \notin \mathbb{Q}\end{cases}
$$

- To exclude such functions, DC considers only interpretations \mathcal{I} satisfying the following condition of finite variability:

For each state variable X and each interval $[b, e]$ there is a finite partition of $[b, e]$ such that the interpretation $X_{\mathcal{I}}$ is constant on each part.
Thus a function $X_{\mathcal{I}}$ is of finite variability if and only if, on each interval $[b, e]$, the function $X_{\mathcal{I}}$ has only finitely many points of discontinuity.

Remark 2.5. The semantics $\mathcal{I} \llbracket \theta \rrbracket$ of a term is insensitive against changes of the interpretation \mathcal{I} at individual time points.

More formally:

- Let $\mathcal{I}_{1}, \mathcal{I}_{2}$ be interpretations of Obs such that $\mathcal{I}_{1}(X)(t)=\mathcal{I}_{2}(X)(t)$ for all $X \in$ Obs and all $t \in$ Time $\backslash\left\{t_{0}, \ldots, t_{n}\right\}$.
Then $\mathcal{I}_{1} \llbracket \theta \rrbracket(\mathcal{V},[b, e])=\mathcal{I}_{2} \llbracket \theta \rrbracket(\mathcal{V},[b, e])$ for all terms θ and intervals $[b, e]$.

Remark 2.6. The semantics $\mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[b, e])$ of a rigid term does not depend on the interval $[b, e]$.

Syntax / Semantics Overview

Syntax	Semantics (meaning)
predicate symbols true, false, $=,<,>, \leq, \geq$	true $=\mathrm{tt} \in \mathbb{B}, \quad \hat{=}: \mathbb{R}^{2} \rightarrow \mathrm{~B}$
function symbols $f / n, g$	$\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
state variables $\quad X, Y, Z$	$\mathcal{I}(X):$ Time $\rightarrow \mathcal{D}(X)$
domain values d	$\hat{d} \in \mathcal{D}(X)$
global variables x, y, z	$\mathcal{V}(x) \in \mathbb{R}$
state assertions P	$\begin{aligned} & \mathcal{I} \llbracket P \rrbracket: \text { Time } \rightarrow\{0,1\} \\ & \mathcal{I} \llbracket P \rrbracket(t) \in\{0,1\} \\ & \hline \end{aligned}$
terms θ	$\begin{aligned} & \mathcal{I} \llbracket \theta \rrbracket: \text { Val } \times \text { Intv } \rightarrow \mathbb{R} \\ & \mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[b, e]) \in \mathbb{R} \end{aligned}$
formula 7	I[IF]: Varx hutw \rightarrow 发, A

Content

- Symbols
- predicate and function symbols
- state variables and domain values
global (or logical) variables
- State Assertions
-- syntax
- semantics
- Terms
- syntax
- rigid terms
- intervals
- semantics
- remarks

Tell Them What You've Told Them. . .

- State assertions over
- state variables (or observables), and
- predicate symbols
are evaluated at points in time.
The semantics of a state assertion is a truth value.
- Terms are evaluated over intervals and can
- measure the accumulated duration of a state assertion,
- measure the length of intervals, and
- use function symbols.

The semantics of a term is a real number.

- The value of rigid terms is independent from the considered interval.
- The semantics of terms is insensitive against changes at finitely many points in time.

References

References

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

