Real-Time Systems

Lecture 3: Duration Calculus I

2017-10-26

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

 Duration Calculus (DC)
 Semantical Correctness Proofs
 DC Decidability
 DC Implementables Content Observables and Evolutions Introduction PLC-Automata $obs:\mathsf{Time} \to \mathscr{D}(obs)$ Timed Automata (TA), Uppaal
Networks of Timed Automata
Region/Zone-Abstraction
TA model-checking
Extended Timed Automata
Undecidability Results $(obs_0,\nu_0),t_0\xrightarrow{\lambda_0}(obs_1,\nu_1),t_1\dots$

 $\begin{array}{c} \text{averywhere.} \\ \Gamma_0 \downarrow \underbrace{\left[\begin{array}{c} \Gamma_1 \\ \text{(x_1, x_2, $(-1.1]$} \end{array} \right]}_{\text{φ $e} \text{ 2, q}} \end{array}$

Duration Calculus: Preview Duration Calculus is an interval logic.
 Formulae are evaluated in an (implicitly given) interval.

 $G_*F_*I_*H:\{0,1\}$ $\mathsf{Define}\, L:\{0,1\}\,\mathsf{as}\, G\wedge \neg F$

Duration Calculus: Syntax Overview

Content

Symbols
 predicate and function symbols
 state variables and domain values
 global (or logical) variables

• Terms

• syntax

• rigid terms

• intervals

• semantics

• remarks

(v) Abbreviations: (iii) Terms: (ii) State Assertions: $\overbrace{\text{true, false,}}^{p,q} = \langle \cdot, \cdot, \cdot \leq, \geq \rangle \left(f, g_{j} \right) (X, Y, Z, -d, \left(x, y, z, \right))$ $\lceil \ \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \Diamond F, \quad \Box F$ $P := 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$ $\theta := x \mid \ell \mid f \mid P \mid f(\theta_1, \dots, \theta_n)$ $\dots, \underline{\theta_n}$) | $\neg F_1$ | $F_1 \land F_2$ | $\forall x \bullet F_1$ | F_1 ; F_2

Duration Calculus: Overview

We will introduce four syntactical categories (and abbreviations):

(i) Symbols:

Duration Calculus: Symbols

```
    The semantics of an n-ary function symbol f is a function from R<sup>n</sup> to R, denoted f, i.e. f: R<sup>n</sup> → R.
    For constants (arity n = 0) we have f ∈ R.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         • In the following, we assume the following function symbols: constants: i/0 for each i\in \mathbb{N} \mathbb{R} f and so some function f and f are f and f and f and f and f are f and f and f and f and f are f are f and f are f are f and f are f and f are f are f are f are f are f are f and f are f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \bullet~ We assume a set of function symbols to be given, typical elements f,g.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \bullet \  \  \, \text{Each function symbol } f \  \, \text{has an arity } n \in \mathbb{N}_{6}; \quad \text{shorthand notation: } f/n. \\ \bullet \  \, \text{A function symbol } f/n \text{ is called a constant if and only if } n=0. \\ \end{split}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  true, false, =, <, >, \leq, \geq, \qquad \boxed{f,g}, \quad X, Y, Z, \quad d, \quad x, y, z,
```

Symbols: Predicate Symbols

• For constants (arity n=0) we have $\hat{p} \in \mathbb{B}$.

 $\bullet \ tr\hat{u}e = \mathsf{tt}, \ false = \mathsf{ff}, \\ \bullet \ \hat{=} : \mathbb{R} \times \mathbb{R} \to \mathbb{B}, \quad \hat{=} (a,b) = \mathsf{tt}, \ \mathsf{iff} \ a = b, \quad \hat{=} (a,b) = \mathsf{ff}, \ \mathsf{iff} \ a \neq b, \\ \hat{=} (3,17) = \mathsf{ff}, \quad \hat{=} (2,2) = \mathsf{tt}.$

7/39

One More Time

Same Game: Function Symbols

To better distinguish syntax from semantics, we could choose to work with the following symbols for natural numbers:

Syntax: • zero, one, two, ..., twentyseven,...

(all with arity 0)

Semantics:

zero = 0 ∈ R,
 oñe = 1 ∈ R,
 two = 2 ∈ R,

....
twentŷseven = 27 ∈ R.

 $\bullet \stackrel{\bullet}{•} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad \stackrel{\bullet}{•} (a,b) = a + b,$ $\stackrel{\bullet}{•} (1,2) = 3.$ • $\hat{0} = 0 \in \mathbb{R}$, $\hat{27} = 27 \in \mathbb{R}$,

11/39

Once Again: Syntax vs. Semantics

```
Predicate symbols are principally freely chosen, we could also consider the following ones:
```

To semantically work with a predicate symbol, we need to define a meaning.

One possible choice:
•
$$\diamondsuit : \mathbf{R} \to \mathbf{B}$$

$$\hat{\nabla}(a) = \begin{cases} \text{tt} & \text{if } a \in \mathbf{N} \text{ and digit sum of } a \text{ equals } 27 \\ \text{ff} & \text{otherwise} \end{cases}$$

$$\hat{\mathbf{w}} \colon \mathbf{R} \times \mathbf{R} \times \mathbf{R} \to \mathbf{B}$$

$$\hat{\mathbf{w}} : \mathbf{R} \times \mathbf{R} \times \mathbf{R} \to \mathbf{B}$$

$$\hat{\mathbf{w}} : a \cdot \mathbf{R} \to \mathbf{B}$$

$$\hat{\mathbf{w}} : a \cdot \mathbf{R} \to \mathbf{B}$$

$$\begin{split} & * \hat{\boldsymbol{w}} : \mathbf{R} \times \mathbf{R} \times \mathbf{R} \to \mathbf{B} \\ & \hat{\boldsymbol{w}}(a,b,c) = \begin{cases} \mathbf{t} & \text{if } a\omega^2 + bx + c = 0 \text{ has at least one solution} \\ & \text{geq} : \mathbf{R} \times \mathbf{R} \to \mathbf{B} \end{cases} \\ & \text{geq}(a,b) = \begin{cases} \mathbf{t} & \text{otherwise} \end{cases} \\ & \text{otherwise} \end{cases} \\ & \text{otherwise} \end{cases}$$

One More Time

To better distinguish syntax from semantics, we could choose to work with the following symbols for natural numbers:

Syntax:

(all with arity 0)

• $\hat{0} = 0 \in \mathbb{R}$, • $\hat{1} = 1 \in \mathbb{R}$, • $\hat{2} = 2 \in \mathbb{R}$,

Semantics:

• 27 = 27 ∈ R. • 2...

Symbols: State Variables and Domain Values

$\bullet~$ We assume a set 'Obs' of state variables or observables, typical elements X,Y,Z. $true,false,=,<,>,\leq,\geq,\quad f,g,\quad \boxed{X,Y,Z}\;,\quad \boxed{d}\;,\quad x,y,z,$

- ullet For each domain $\{d_1,\dots,d_n\}$ of a state variable in 'Obs' we assume
- symbols d_1, \dots, d_n

• with $\hat{d}_i = d_i$, $1 \le i \le n$.

• A state variable with domain $\{0,1\}$ is called boolean observable. $\bullet \ \ {\sf Each \ state \ variable} \ X \ {\sf has \ a \ finite} \ ({\sf semantical}) \ {\sf domain} \ \mathcal{D}(X) = \{d_1, \dots, d_n\}.$

- state variable F ("flame sensor"). domain $\mathcal{D}(F)=\{0,1\}$. symbols 0,1 with $\hat{0}=0\in\mathbb{N}_0,\,\hat{1}=1\in\mathbb{N}_0.$

 $*\ \, \text{state variable } T\text{ ("traffic lights")}, \quad \text{domain } \mathcal{D}(T) = \{\text{red}, \text{green}\},\\ \text{symbols } \text{red}, \text{green with with } \text{red} = \text{red} \in \mathcal{D}(T), \text{ green} = \text{green} \in \mathcal{D}(T).$

Example: Evolutions vs. Interpretation of State Variables

- J. J. J.
- $\mathcal{I}:\mathsf{Obs} \to (\mathsf{Time} \to \mathcal{D}):$ $\prod_{i}^{n} \leftarrow H$ Î

Interpretation of State Variables

- The last semantical domain we consider is
- $\label{eq:continuous} \begin{tabular}{ll} \bullet & the set Time of points in time. \\ \bullet & mostly. Time = R_0^+ (continuous / dense). \\ \hline sometimes Time = N_0 (discrete time). \\ \end{tabular}$
- The semantics of a state variable is time-dependent.

It is given by an interpretation \mathcal{I} , i.e. a mapping

$$\mathcal{I}:\mathsf{Obs}\to (\mathsf{Time}\to \mathcal{D}), \qquad \mathcal{D}=\bigcup_{X\in\mathsf{Obs}}\mathcal{D}(X),$$

assigning to each state variable $X\in\mathsf{Obs}$ a function

variable
$$X\in \mathsf{Obs}$$
 a function
$$\mathcal{I}(X):\mathsf{Time}\to \mathcal{D}(X)$$

such that $\mathcal{I}(X)(t)\in\mathcal{D}(X)$ denotes the value that X has at time $t\in \mathsf{Time}$. For convenience, we shall abbreviate $\mathcal{I}(X)$ to $\overline{X_{\mathcal{I}}}$.

Evolutions over Time vs. Interpretation of State Variables

• Let $Obs = \{obs_1, \dots, obs_n\}$ be a set of state variables. • Evolution (over time) of Obs:

 $\pi: \mathsf{Time} \to \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n).$

• Interpretation of Obs:
$$\mathcal{I}:\mathsf{Obs}\to(\mathsf{Time}\to\mathcal{D}).$$

- Both, π and \mathcal{I} , represent the same timed behaviour if, • for all $t \in \text{Time}$,
- $\bullet \ \, \mathcal{I}(obs_i)(t) = \pi(t) \downarrow i, \quad 1 \leq i \leq n, \mathsf{or}$
- $\pi(t) = (\mathcal{I}(obs_1)(t), \dots, \mathcal{I}(obs_n)(t)) = (obs_{1z}(t), \dots, obs_{nz}(t)).$

Predicate / Function Symbols vs. State Variables

$true, false, =, <, >, \leq, \geq, \quad f,g, \quad X,Y,Z, \quad d, \quad x,y,z,$

- The choice of function and predicate symbols introduced earlier, i.e.
- true, false, =, <, >, ≤, ≥,
- 0,1,....
- and their semantics, i.e.

- $$\label{eq:continuity} \begin{split} & \text{ℓ r\hat{n}_{\ell}$ is the truth value } tt \in B, \\ & \bullet \stackrel{.}{=} : R^2 \to B \text{ is the equality relation on real numbers,} \\ & \bullet \hat{0} \text{ is the (real) number zero from } R, \\ & \bullet \stackrel{.}{+} : R^2 \to R \text{ is the addition function on real numbers,} \end{split}$$

is fixed throughout the lecture.

 The choice of observables and their domains depends on the system we want to describe.

17/39

$$true, false, =, <, >, \leq, \geq, \quad f, g, \quad X, Y, Z, \quad d, \quad \boxed{x, y, z} \; ,$$

Symbols: Global Variables

- We assume a set 'GVar' of global (or $\underline{\log(ca)}$) variables, typical elements x,y,z.
- The semantics of a global variable is given by a valuation, i.e. a mapping

$$\mathcal{V}:\mathsf{GVar}\to\mathbb{R}$$

assigning to each global variable $x \in \mathsf{GVar}\,\mathsf{a}$ real number $\mathcal{V}(x) \in \mathbb{R}$.

Global variables are fixed over time in system evolutions. We use Val to denote the set of all valuations, i.e. $Val = (GVar \rightarrow \mathbb{R})$.

Symbols: Overview

Syntax predicate symbols	Semantics (meaning)
$true, false, =, <, >, \le, \ge$	$t\hat{rue} = tt \in \mathbb{B}, \hat{=} : \mathbb{R}^2 \to \mathbb{B}$
function symbols	
f/n,g	$\hat{f}: \mathbb{R}^n \to \mathbb{R}$
state variables	
X,Y,Z	$\mathcal{I}(X):Time\to\mathcal{D}(X)$
domain values	
d	$\hat{d} \in \mathcal{D}(X)$
global variables	
x,y,z	$V(x) \in \mathbb{R}$

State Assertions: Syntax

The set of state assertions is defined by the following grammar:

$$P ::= \mathbf{0} \mid \mathbf{1} \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

 $\begin{array}{ll} \bullet & X \in \mathsf{Obs} \text{ is a state variable,} \\ \bullet & d \text{ denotes a value from } X \text{ 's domain,} \end{array}$

We shall use P, Q, R to denote state assertions.

Here. '0'. '1'. '=', '¬', and '∧' are like keywords (or terminal symbols) in programming languages.

* We shall write X in stead of, X=1 if X is boolean, i.e. if $\mathcal{D}(X)=\{0,1\}$. * Assume the usual precedence —binds stronger than \land * Define \lor , \Longrightarrow , \Longleftrightarrow as usual.

22/39

Duration Calculus: State Assertions

20/39

State Assertions: Examples

Duration Calculus: Overview

We will introduce four syntactical categories (and abbreviations):

(i) Symbols $\int_{\text{true}, false, =, <,>, <,\geq} \int_{\mathcal{A}} f, g, \quad X, Y, Z, \quad d, \quad x, y, z,$

(ii) State Assertions:

(iii) Terms:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2 \quad | (P)$$

 $\theta ::= x \mid \ell \mid f P \mid f(\theta_1, \dots, \theta_n) \mid (\Theta)$

(iv) Formulae:

$$F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \wedge F_2 \mid \forall x \bullet F_1 \mid F_1 \colon F_2 \not \mid (\not \mp)$$

$$\lceil \ \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \Diamond F, \quad \Box F$$

State Assertions: Semantics

 $\bullet \;\;$ The semantics of state assertion P is a function

$$\mathcal{I}[\![P]\!]:\mathsf{Time}\to\{0,1\},$$

i.e., $\mathcal{I}[\![P]\!](t)$ denotes the truth value of P at time $t\in \mathsf{Time}.$

• The value $\mathcal{I}[\![P]\!](t)$ is defined inductively over the structure of P:

 $\mathcal{I}[\![P_1 \wedge P_2]\!](t) = \begin{cases} \mathcal{A} & \text{if } \mathbb{I}\mathbb{I}P_1\mathbb{J}(\mathcal{L}) = \mathcal{A} \text{, } i \in \mathcal{U} \end{cases}$ $\mathcal{I}[[\mathbf{X} = \mathbf{d}]](t) = \begin{cases} 1 & \text{if } X_{\underline{I}}(\mathcal{E}) = \hat{\mathbf{d}} \\ 0 & \text{otherwise} \end{cases}$ $\mathbb{Z}[\neg P_1](t) = 1 - \mathbb{I}\mathbb{Z} \mathbb{R} \mathbb{I}(\mathcal{E})$ $\mathcal{I}[\mathbf{1}](t) = 1$ I[0](t) = 0

State Assertions: Notes

State Assertions: Example

• Interpretation $\mathcal I$ of boolean observables G and F:

 $\, \bullet \,$ If X is a boolean observer, the following equalities hold:

$$\mathcal{I}[\![X]\!](t) = \mathcal{I}[\![X=1]\!](t) = \mathcal{I}(X)(t) = X_{\mathcal{I}}(t).$$
 where we have (a, t)

• $\mathcal{I}[\![P]\!]$ is also called interpretation of P.

We shall write $P_{\mathcal{I}}$ as a shorthand notation.

Here, the state assertions 0 and 1 are treated like boolean values (like tt and ff), it will become clear in a minute, why 0, 1 is a better choice than tt and ff.

 $\begin{cases} \text{Consider state assertion } L := \underline{G} \land \neg F. \quad (G = t) \land \neg \neg (T = v) \\ *L_Z(1,2) = t \text{ because} \end{cases}$ $= \underbrace{LZ(2,2) = t}_{L_Z(1,2) = t} \underbrace{LZ(3,2) = t}_{L_Z(2,2) = t} \underbrace{LZ(3,2) = t}_{L_$

 $\bullet \,$ Interpretation of L as timing diagram:

25/39

Terms: Syntax

Duration Calculus: Overview

We will introduce four syntactical categories (and abbreviations):

(i) Symbols:

 $\overline{true,false,=,<,>,\leq,\geq},\quad f,g,\quad X,Y,Z,\quad d,\quad x,y,z,$

Duration terms (or DC terms, or just terms) are defined by the following grammar:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

• x is a global variable from GVar, • f a function symbol (of arity n). • P is a state assertion, and

 \bullet ' ℓ and ' j ' are like keywords (or terminal symbols) in programming languages.

• ℓ is called length operator. • f is called integral operator.

* Notation: we may write function symbols in infix notation as usual, i.e. we may write b_1+b_2 instead of $+(b_1,b_2)$, i.e. we may write b_1+b_2 instead of $+(b_1,b_2)$.

(iv) Formulae: (iii) Terms:

 $F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \wedge F_2 \mid \forall x \bullet F_1 \mid F_1 : F_2$

 $\lceil \ \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \Diamond F, \quad \Box F$

(ii) State Assertions:

 $P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$ $\theta ::= x \mid \ell \mid f \mid P \mid f(\theta_1, \dots, \theta_n)$

(v) Abbreviations:

Duration Calculus: Terms

27/39

Terms: Syntax

Duration terms (or DC terms, or just terms) are defined by the following grammar:

$$\theta ::= x \mid \ell \mid fP \mid f(\theta_1, \dots, \theta_n)$$

 $\label{eq:section} \bullet \ x \ \text{is a global variable from GVar}, \qquad \bullet \ f \ \text{a function symbol (of arity n)}. \\ \bullet \ P \ \text{is a state assertion, and}$

 $\bullet~{}^{\prime}\mathscr{C}$ and ' J ' are like keywords (or terminal symbols) in programming languages.

 \ell\ is called length operator. f is called integral operator.

Notation: we may write function symbols in infix notation as usual, i.e. we may write $\theta_1+\theta_2$ instead of $+(\theta_1,\theta_2)$.

Definition 1. [Rigid]
A term without length and integral operators is called rigid.

Towards Semantics of Terms: Intervals

- Let $b,e\in \mathrm{Time}$ be points in time s.t. $b\leq e$. Then [b,e] denotes the closed interval $\{x\in \operatorname{Time}\mid b\leq x\leq e\}.$
- We use 'Intv' to denote the set of closed intervals in the time domain, i.e.

$$\mathsf{Intv} := \{[b,e] \mid b,e \in \mathsf{Time}\}.$$

ullet Closed intervals of the form [b,b] are called point intervals.

30/39

Terms: Is the Semantics Well-defined?

Terms: Remarks

- So, $\mathcal{I}[\![fP]\!](\mathcal{V},[b,e])$ is $\int_b^\cdot P_{\mathcal{I}}(t)\,dt$ but does the integral always exist?

 $\bullet~$ IOW: is there a $P_{\mathcal{I}}$ which is not (Riemann-)integrable? Yes. For instance

$$P_{\mathcal{I}}(t) = \begin{cases} 1 & \text{if } t \in \mathbb{Q} \\ 0 & \text{if } t \notin \mathbb{Q} \end{cases}$$

 \bullet To exclude such functions, DC considers only interpretations $\mathcal I$ satisfying the following condition of finite variability: For each state variable X and each interval [b,e] there is a finite partition of [b,e] such that the interpretation $X_{\mathcal{I}}$ is constant on each part.

Thus a function $X_{\mathcal{I}}$ is of finite variability if and only if, on each interval [b,e], the function $X_{\mathcal{I}}$ has only finitely many points of discontinuity.

33/39

Terms: Semantics

 $\bullet \;$ The semantics of a term θ is a function

$$\mathcal{I}[\![\theta]\!]:\mathsf{Val}\times\mathsf{Intv}\to\mathbb{R},$$

that is, $\mathbb{Z}[\![\theta]\!]$ maps a pair consisting of a valuation and an interval to a real number.

- $\mathcal{I}[\![\theta]\!](\mathcal{V},[b,e])$ is called
- the value (or interpretation) of θ under interpretation $\mathcal I$ and valuation $\mathcal V$
- The value $\mathcal{I}[\![\theta]\!](\mathcal{V},[b,e])$ is defined inductively over the structure of θ : in the interval [b, e].

$$I[x](V,(b,e))=V(x)$$

$$I[g](V,(b,e))=e-b$$
Sinterior integral $f(x)$

 $\frac{d}{dx} \frac{dx^{\mu\nu}}{dx^{\mu\nu}} \int_{0}^{dx} \left[|\mathcal{F}_{\mu}(x, \{0, e\}) = \int_{0}^{d} \frac{dx}{R_{\mu}^{2}} (e) \right] dx}{\mathcal{I}[f(\theta_{1}, \dots, \theta_{n})](Y, \{0, e\}) = \hat{f}(-\mathbb{I} \mathbb{E} Q \mathcal{L}^{p} [bes]), -, \mathbb{I} \mathcal{O}_{\mu}[Q (b, g])}$

$$\begin{aligned} &\text{Consider the term}_{\ell}\theta = x \cdot \int L.\\ &\bullet \ \mathcal{I}[\![\theta]\!](\mathcal{V}, [0.5, 3.25]) = \mathcal{I}[\![\cdot(x, \int L)]\!](\mathcal{V}, [0.5, 3.25]) \end{aligned}$$

- $= \widehat{\cdot} (\quad \mathcal{I}[\![x]\!](\mathcal{V}, [0.5, 3.25]), \quad \mathcal{I}[\![fL]\!](\mathcal{V}, [0.5, 3.25]) \quad)$
- $= \widehat{}(\quad \mathcal{V}(x), \quad \mathcal{I}[\![fL]\!](\mathcal{V},[0.5,3.25]) \quad)$
- $= \hat{\ } (20, \mathcal{I}[[fL]](\mathcal{V}, [0.5, 3.25]))$
- $= \widehat{\cdot} \left(\begin{array}{cc} 20, & \int_{0.5}^{3.25} L_{\mathcal{I}}(t) dt \end{array} \right) = \widehat{\cdot} \left(\begin{array}{cc} 20, & 1.25 \end{array} \right) = 20 \cdot 1.25 = 25$
- $\mathcal{I}[\![\theta]\!](\mathcal{V}, [1.5, 1.5]) = \mathbf{O}$

Syntax / Semantics Overview

forments #		terms θ		state assertions P	global variables x, y, z	$domainvalues\ d$	state variables X, Y, Z	function symbols $f/n,g$	$true, false, =, <, >, \leq, \geq$	predicate symbols	Syntax	
エロエ』: パイメルか →3米,月3つ	$\mathcal{I}[\![\theta]\!](\mathcal{V},[b,e]) \in \mathbb{R}$	$\mathcal{I}[\![heta]\!]: Val imes Intv o \mathbb{R}$	$I[P](t) \in \{0, 1\}$	$\mathcal{I}[\![P]\!]:Time\to\{0,1\}$	$V(x) \in \mathbb{R}$	$\hat{d} \in \mathcal{D}(X)$	$\mathcal{I}(X):Time\to\mathcal{D}(X)$	$\hat{f}: \mathbb{R}^n \to \mathbb{R}$	$\hat{true} = tt \in \mathbb{B}, \hat{=} : \mathbb{R}^2 \to \mathbb{B}$		Semantics (meaning)	

• Let $\mathcal{I}_1,\mathcal{I}_2$ be interpretations of Obs such that $\mathcal{I}_1(X)(t)=\mathcal{I}_2(X)(t)$ for all $X\in \mathsf{Obs}$ and all $t\in \mathsf{Time}\setminus\{b_0,\dots,t_n\}$. Then $\mathcal{I}_1[\theta](Y,[b,e])=\mathcal{I}_2[\theta](Y,[b,e])$ for all terms θ and intervals [b,e].

Remark 2.6. The semantics $\mathcal{I}[\![\theta]\!](Y,[b,e])$ of a rigid term does not depend on the interval [b,e] .

More formally:

Remark 2.5. The semantics $\mathcal{I}[\emptyset]$ of a term is insensitive against changes of the interpretation $\mathcal I$ at individual time points.

Content

 Symbols
 predicate and function symbols
 state variables and domain values
 sglobal (or logical) variables

36/39

References
Oberog, E.-R. and Dietas, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

39/39

Tell Them What You've Told Them...

State assertions over
 state variables (or observables), and
 predicate symbols

are evaluated a points in time.

The semantics of a state assertion is a truth value.

Terms are evaluated over intervals and can

measure the elength of intervals, and

use function symbols.

The semantics of a term is a real number.

is independent from the considered interval.

The semantics of terms is insensitive

against changes at finitely many points in time.

37/39

References

38/39