Real-Time Systems Lecture 4: Duration Calculus II

2017-11-02

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- 4 - 2017-11-02 -

• Formulae

- syntax, priority groups
- syntactic substitution
- semantics
- well-definedness
- └-(● remarks, substitution lemma

• DC Abbreviations

- point interval, almost everywhere
- for some subinterval / for all subintervals
- Validity, Satisfiability, Realisability
- realisability / validity from 0
- Proving design ideas correct: Method
- └ ∈ Example: gas burner

Duration Calculus: Formulae

3/31

Duration Calculus: Overview

- 2017-11-02 - n

- 4 - 2017-11-02 - Sdco

We will introduce four syntactical categories (and abbreviations):

(i) Symbols: $\begin{array}{c}p.q\\\hline true, false, =, <, >, \leq, \geq, f, g, (X, Y, Z, d, x, y, z, d)\\\hline (ii) State Assertions:$ (iii) Terms: $<math display="block">\begin{array}{c}P::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2\\\hline \theta::= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta::= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))\\\hline \theta:= x \mid \ell \mid f(P \mid f(\theta_1, \dots, \theta_n))$

 $[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$

• The set of **DC formulae** is defined by the following grammar:

 $F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 \not F_2$

where p is a predicate symbol, θ_i are terms, and x is a global variable.

• chop operator: ;

-4 - 2017-11-02 - Sdcfor

4 - 2017-11-02 - Sdcfc

- atomic formula: $p(\theta_1, \ldots, \theta_n)$
- rigid formula: all terms are rigid (no ℓ , no $\int P$)
- chop free: ';' doesn't occur
- usual notion of free and bound (global) variables —
- Note: quantification only over (first-order) global variables, not over (second-order) state variables.

Go JX . X > 3 NOT

Vx • JP>x x y< 10 bound free

5/31

Formulae: Priority Groups

• To avoid parentheses, we define the following five **priority groups** from highest to lowest priority (or precedence):

• ¬	(negation)
•;	(chop)
• ^, V	(and/or)
$\bullet \implies$, \iff	(implication/equivalence)
• ∃,∀	(quantifiers)

...of a term θ for a variable x in a formula F.

• We use

2017-11-02 - Sdcfb

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into F̃ by (consistently) renaming bound variables such that no free occurrence of x in F̃ appears within a quantified subformula ∃ z G or ∀ z G for some z occurring in term θ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

7/31

Syntactic Substitution...

- ...of a term θ for a variable x in a formula F.
- We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into F by (consistently) renaming bound variables such that no free occurrence of x in F
 appears within a quantified subformula ∃ z G or ∀ z G
 for some z occurring in term θ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Example:

• $\theta_1 := \ell$, $F[x := \theta_1] = (\ell \ge y \implies \exists z \bullet z \ge 0 \land \ell = y + z)$

- ... of a term θ for a variable x in a formula F.
- We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into \tilde{F} by (consistently) renaming bound variables such that **no free occurrence** of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in term θ ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Example:

4 - 2017-11-02 - Sdcfon

- $\theta_1 := \ell$, $F[x := \theta_1] = (\ell \ge y \implies \exists z \bullet z \ge 0 \land \ell = y + z)$
- $\theta_2 := \ell + z$, $F = (x \ge y \implies \exists z \bullet z \ge 0 \land x = y + z)$

7/31

Syntactic Substitution...

- ... of a term θ for a variable x in a formula F.
- We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into \tilde{F} by (consistently) renaming bound variables such that **no free occurrence** of x in Fappears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in term θ ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Example:

•
$$\theta_1 := \ell$$
, $F[x := \theta_1] = (\ell \ge y \implies \exists z \bullet z \ge 0 \land \ell = y + z)$
• $\theta_2 := \ell + z$, $F[x := \theta_2] = (\ell + z \ge y \implies \exists z \bullet z \ge 0 \land \ell + z) = y + z)$

- ...of a term θ for a variable x in a formula F.
- We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into F̃ by (consistently) renaming bound variables such that no free occurrence of x in F̃ appears within a quantified subformula ∃ z G or ∀ z G for some z occurring in term θ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Example:

+ - 2017-11-02 - Sdcfor

• $\theta_1 := \ell$, $F[x := \theta_1] = (\ell \ge y \implies \exists z \bullet z \ge 0 \land \ell = y + z)$ • $\theta_2 := \ell + z$, $F[x := \theta_2] = (\ell + z \ge y \implies \exists z \bullet z \ge 0 \land \ell + z = y + z)$ • $F[x := \theta_2] = \ell + z \ge y \implies \exists \tilde{z} \bullet \tilde{z} \ge 0 \land \ell + z = y + \tilde{z})$

7/31

Formulae: Semantics

• The semantics of a formula is a function

$$\mathcal{I}\llbracket F \rrbracket : \mathsf{Val} \times \mathsf{Intv} \to \{\mathsf{tt}, \mathsf{ff}\}$$

 $\mathcal{I}\llbracket F \rrbracket(\mathcal{V}, [b, e])$: truth value of F under interpretation \mathcal{I} and valuation \mathcal{V} in the interval [b, e].

• $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e])$ is defined inductively over the structure of F:

$$\begin{array}{c} \mathcal{I}[\![p(\theta_1,\ldots,\theta_n)]\!](\mathcal{V},[b,e]) = \hat{p}(\mathcal{I}[\![\theta_1]\!](\mathcal{V},[b,e]),\ldots,\mathcal{I}[\![\theta_n]\!](\mathcal{V},[b,e])), \\
\mathcal{I}[\![\neg F_1]\!](\mathcal{V},[b,e]) = \mathrm{tt} \quad \mathrm{iff} \quad \mathcal{I}[\![F_1]\!](\mathcal{V},[b,e]) = \mathrm{ff}, \\
\mathcal{I}[\![F_1 \wedge F_2]\!](\mathcal{V},[b,e]) = \mathrm{tt} \quad \mathrm{iff} \quad \mathcal{I}[\![F_i]\!](\mathcal{V},[b,e]) = \mathrm{tt}, i \in \{1,2\}, \\
\mathcal{I}[\![\forall x \bullet F_1]\!](\mathcal{V},[b,e]) = \mathrm{tt} \quad \mathrm{iff} \quad \mathrm{for} \text{ all} \stackrel{\bullet}{a} \in \mathbb{R}, \\
\mathcal{I}[\![F_1[x := a]]\!](\mathcal{V},[b,e]) = \mathrm{tt} \\
\mathcal{I}[\![F_1]\!](\mathcal{V},[b,e]) = \mathrm{tt} \\
\end{array}$$

Formulae: Example
$$F := \int L = 0; \int L$$

= 1

• $\mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [0, 2]) = \mathsf{tt}$

Proof:

4 - 2017-11-02 - Sdcform

• Choose m = 1 as chop point.

9/31

• $\mathcal{I}[\![F]\!](\mathcal{V},[0,2]) = \mathsf{tt}$

Proof:

- 2017-11-02 - Sdcform

• Choose m = 1 as chop point.

Formulae: Example $F := \int L = 0; \int L = 1$ $\equiv ((\int L) = 0); ((\int L) = 1) \equiv \underbrace{[= ((\int L), 0)]}_{\mathcal{T}_{\gamma}}; \underbrace{[= ((\int L), 1)]}_{\mathcal{T}_{\zeta}};$ $L_{\mathcal{I}}_{0} = \underbrace{[= ((\int L), 0]}_{\mathcal{T}_{\gamma}}; \underbrace{[= ((\int L), 1)]}_{\mathcal{T}_{\zeta}};$ Time

• $\mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [0, 2]) = \mathsf{tt}$

Proof:

2017-11-02 - Sdcforn

• Choose m = 1 as chop point. Then

•
$$\mathcal{I}[\![=((\int L), 0)]\!](\mathcal{V}, [0, 1]) = \hat{=}(\mathcal{I}[\![\int L]\!](\mathcal{V}, [0, 1]), \mathcal{I}[\![0]\!](\mathcal{V}, [0, 1]))$$

= $\hat{=}\left(\int_{0}^{1} L_{\mathcal{I}}(t) dt, \hat{0}\right) = \hat{=}(0, 0) = \mathsf{tt},$

9/31

Formulae: Example $F := \int L = 0; \int L = 1$ $\equiv ((\int L) = 0); ((\int L) = 1) \equiv = ((\int L), 0); = ((\int L), 1)$ $L_{x_{0}}^{1} \xrightarrow{0}_{0} \xrightarrow{0}_{1} \xrightarrow{0}_{2} \xrightarrow{0}_{3} \xrightarrow{0}_{4} \xrightarrow{0}_{1} \xrightarrow{0$

Proof:

-4 - 2017-11-02 - Sdcft

• Choose m = 1 as chop point. Then

•
$$\mathcal{I}[[=((\int L), 0)]](\mathcal{V}, [0, 1]) = \hat{=}(\mathcal{I}[[\int L]](\mathcal{V}, [0, 1]), \mathcal{I}[[0]](\mathcal{V}, [0, 1]))$$

 $= \hat{=}\left(\int_{0}^{1} L_{\mathcal{I}}(t) dt, \hat{0}\right) = \hat{=}(0, 0) = \mathsf{tt},$
• and $\mathcal{I}[[=((\int L), 1)](\mathcal{V}, [1, 2])$
 $= \hat{=}(\mathcal{I}[[\int L]](\mathcal{V}, [1, 2]), \mathcal{I}[[1]](\mathcal{V}, [1, 2])) = \hat{=}(1, 1) = \mathsf{tt},$

• Is the chop point *m* unique?

0			
u	۰ ا	-	
7	1	-	

9/31

• rigid formula: all terms are rigid occur

• chop free: ';' doesn't

• rigid term: no length or integral operators

Remark 2.10. [Rigid and chop-free] Let F be a duration formula, \mathcal{I} an interpretation, \mathcal{V} a valuation, and $[b, e] \in Intv$.

• If F is rigid, then

$$\forall \, [b',e'] \in \mathsf{Intv}: \mathcal{I}[\![F]\!](\mathcal{V},[b,e]) = \mathcal{I}[\![F]\!](\mathcal{V},[b',e'])$$

• If F is chop-free or θ is rigid, then in the calculation of the semantics of F, every occurrence of θ denotes the same value.

10/31

Substitution Lemma

-4 - 2017-11-02 - Sdcfc

Lemma 2.11. [Substitution] Consider a formula F, a global variable x, and a term θ such that F is **chop**free or θ is rigid. Then for all interpretations \mathcal{I} , valuations \mathcal{V} , and intervals [b, e],

$$\mathcal{I}\llbracket F[\underline{x}:=\theta] \rrbracket (\mathcal{V}, [b, e]) = \mathcal{I}\llbracket F \rrbracket (\mathcal{V}[\underline{x}:=a], [b, e])$$

where $a = \mathcal{I}[\![\theta]\!](\mathcal{V}, [b, e]).$

- Negative Example: $F := (\ell = x); (\ell = x) \Longrightarrow (\ell = 2 \cdot x), \quad \theta := \ell$
 - $T \not L \neq [x := e]] (V, [he]) = T \not L (e = e] (e = e) = (e = 2 \cdot e)] (V, [he])$ (= yields of for b<e
 - "ITTJ(V[X:=a], [be]) = He (even valid)

We will introduce four syntactical categories (and abbreviations):

- (i) Symbols: $\overbrace{true, false, =, <, >, \leq, \geq}^{p,q}, \quad f,g, \quad X,Y,Z, \quad d, \quad x,y,z,$
- (ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F ::= p(heta_1, \dots, heta_n) \mid
eg F_1 \mid F_1 \wedge F_2 \mid orall x ullet F_1 \mid F_1$$
; F_2

(v) Abbreviations:

-4 - 2017-11-02 - Sdco

4 - 2017-11-02 -

$$[], [P], [P]^t, [P]^{\leq t}, \Diamond F, \Box F$$

12/31

Duration Calculus Abbreviations

Abbreviations

•
$$[] := \ell = 0$$
 she assorian
• $[P] := (fP = \ell) \land (\ell > 0)$ (almost everywhere)
• $[P]^{t} := [P] \land \ell = t$ (for time t)
• $[P]^{\leq t} := [P] \land \ell \leq t$ (up to time t)
• $diamand$
• $\Diamond F := true; F; true$ (for some subinterval)
• $\Box F := \neg \Diamond \neg F$ (for all subintervals)
• $\& \langle FP \rangle$ not satisfied
or any point interval

14/31

Abbreviations: Examples

$\left(\int (\gamma L) \right) = \ell \wedge \ell > 0 \qquad L_{\mathcal{I}_{0}}^{1} \qquad \qquad$		5 true 6	8	Time
/ ta	re; TL7; true			
$\mathcal{I}[(f L)] = 0$	$]\!](\mathcal{V}, [0,2]]$) = #		
\mathcal{I} [] $\int L = 1$	$]\!](\mathcal{V}, [2,6]$	$) = \not{\mathcal{E}}$		
$\mathcal{I}\llbracket ig \int L = 0$; $\int L = 1$	$]\!](\mathcal{V}, [0,6]$) = # ,	w = 2	
$\mathcal{I}[\![\ \] [\neg L]]$	$]\!](\mathcal{V}, [0,2]$	$) = $ $\!$		
\mathcal{I} $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$	$]\!](\mathcal{V}, [2,3]$	$)=\mathscr{H}$		
$\mathcal{I}\llbracket \left\lceil \neg L ight ceil$; $\left\lceil L ight ceil$	$]\!](\mathcal{V}, [0,3]$)= #	un = 2	
\mathcal{I} $\llbracket \ \ \left[\neg L \right]$; $\left[L \right]$; $\left[\neg L \right]$	$]\!](\mathcal{V}, [0,6]$) = # ,	m,=2,	W12 = 3
\mathcal{I} $[\Diamond [L] $	$]\!](\mathcal{V}, [0,6]$)=#	$m_1 = 2$	m2=7
$\mathcal{I}\llbracket \overleftarrow{\Diamond} \lceil \neg L \rceil$	$]\!](\mathcal{V}, [0,6]]$) = .		5
\mathcal{I} \land	$]\!](\mathcal{V}, [0,6]]$	$) = \mathcal{H}$	$m_1 = 3$	Mg = 5
$\mathcal{I}[\Diamond [\neg L]^2; [\mathcal{M}L]^1; [\neg L]^3$	$]\!](\mathcal{V}, [0,6]]$) = ff	or 0 M ₁ = 2	~ 2 m2 = 3

15/31

Content

• Formulae

- syntax, priority groups
- syntactic substitution
- -(• semantics
- well-definedness
- • remarks, substitution lemma

DC Abbreviations

- point interval, almost everywhere
- for some subinterval / for all subintervals
- Validity, Satisfiability, Realisability
- realisability / validity from 0
- Proving design ideas correct: Method
- └ ∈ Example: gas burner

18/31

Validity, Satisfiability, Realisability

-4 - 2017-11-02 -

4 - 2017-11-02 - Sdcsat

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, [b, e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ (read: *F* holds in $\mathcal{I}, \mathcal{V}, [b, e]$) iff $\mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V}, [b, e]$.
- $\mathcal{I}, \mathcal{V} \models F$ (read: \mathcal{I} and \mathcal{V} realise F) iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F.$
- F is called realisable iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ (read: \mathcal{I} realises F) iff $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models F.$ $\forall \mathcal{I} : \mathcal{I} \models F.$
- $\models F$ (read: F is valid) iff

Remark 2.13. For all DC formulae F,

- F is satisfiable if and only if $\neg F$ is not valid,
- F is valid if and only if $\neg F$ is not satisfiable.
- If F is valid then F is realisable, but not vice versa.
- If F is realisable then F is satisfiable, but not vice versa.

20/31

Examples: Valid? Realisable? Satisfiable?

• $\ell \ge 0$

-4 - 2017-11-02 - Sdcsat

- $\ell = \int 1$
- $\ell = 30 \iff \ell = 10$; $\ell = 20$
- $((F;G);H) \iff (F;(G;H))$
- $\int L \leq x$
- $\ell = 2$

- 4 - 2017-11-02 - Sdcsat

Initial Values

-4 - 2017-11-02 - Sdcsat

4 - 2017-11-02 - Sdcsat

• $\mathcal{I}, \mathcal{V} \models_0 F$ (read: \mathcal{I} and \mathcal{V} realise F from 0) iff

$$\forall t \in \mathsf{Time} : \mathcal{I}, \mathcal{V}, [0, t] \models F.$$

- F is called realisable from 0 iff some \mathcal{I} and \mathcal{V} realise F from 0.
- Intervals of the form [0, t] are called initial intervals.
- $\mathcal{I} \models_0 F$ (read: \mathcal{I} realises F from 0) iff $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models_0 F$.
- $\models_0 F$ (read: *F* is valid from 0) iff $\forall \mathcal{I} : \mathcal{I} \models_0 F$.

22/31

Initial or not Initial...

Content

• Formulae

- syntax, priority groups
- syntactic substitution
- -<- semantics
- well-definedness
- └-(● remarks, substitution lemma

DC Abbreviations

- point interval, almost everywhere
- for some subinterval / for all subintervals

• Validity, Satisfiability, Realisability

- realisability / validity from 0
- Proving design ideas correct: Method
- Example: gas burner

- 4 - 2017-11-02 - Scontent

4 - 2017-11-02 -

24/31

Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC In order to prove a controller design correct wrt. a specification:

- (i) Choose observables 'Obs'.
- (ii) Formalise the **requirements** 'Spec' as a conjunction of DC formulae (over 'Obs').
- (iii) Formalise a controller design 'Ctrl' as a conjunction of DC formulae (over 'Obs').
- (iv) We say 'Ctrl' is correct (wrt. 'Spec') iff

 $\models_0 \mathsf{Ctrl} \implies \mathsf{Spec},$

so "just" prove $\models_0 \mathsf{Ctrl} \implies \mathsf{Spec.}$

26/31

Gas Burner Revisited

2017-11-02 - Sdci

- (i) Choose observables:
 - F : {0,1}: value 1 models "flame sensed now" (input)
 - G : {0,1}: value 1 models "gas valve is open now" (output)
 - define $L := G \land \neg F$ to model leakage
- (ii) Formalise the requirement:

$$\mathsf{Req} := \Box(\ell \ge 60 \implies 20 \cdot \int L \le \ell)$$

"in each interval of length at least 60 time units, at most 5% of the time leakage" (iii) Formalise controller design ideas:

- Des-1 := $\Box(\lceil L \rceil \implies \ell \le 1)$ "leakage phases last for at most one time unit"
- Des-2 := $\Box(\lceil L \rceil; \lceil \neg L \rceil; \lceil L \rceil \implies \ell > 30)$

"non-leakage phases between two leakage-phases last at least 30 time units"

(iv) Prove correctness, i.e. prove \models (Des-1 \land Des-2 \implies Req).

```
(Or do we want "\models_0"...?)
```


flame sens

qas valve

Content

2017-11-02 -

4 - 2017-11-02 -

• Formulae

- -(• syntax, priority groups
- syntactic substitution
- semantics
- well-definedness
- remarks, substitution lemma

DC Abbreviations

- o point interval, almost everywhere
- for some subinterval / for all subintervals

• Validity, Satisfiability, Realisability

- realisability / validity from 0
- Proving design ideas correct: Method
- └_(● Example: gas burner

28/31

Tell Them What You've Told Them...

- Duration Calculus Formulae
 - using, e.g., the chop operator

are evaluated for intervals and valuations.

The semantics of a DC formula is a truth value.

- The following abbreviations are sometimes useful
 - point interval ([]), almost everywhere ([P]),
 - for some subinterval ($\Diamond F$), for all subintervals ($\Box F$)
- DC Formulae have notions of
 - satisfiability and validity (as usual),
 - realisability ("for all subintervals")
 - also: from 0
- Outlook on next lecture: proving design ideas correct wrt. requirements.

References

30/31

References

-4 - 2017-11-02 - main

- 4 - 2017-11-02 - main -

Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

EXAM - oral / written

- DATE (mid / laste March)

(Tree fix on