Real-Time Systems
 Lecture 4: Duration Calculus II

2017-11-02

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- Formulae

- syntax, priority groups
- syntactic substitution
- semantics
- well-definedness
- remarks, substitution lemma
- DC Abbreviations
- - point interval, almost everywhere

4 - for some subinterval / for all subintervals

- Validity, Satisfiability, Realisability
- realisability / validity from 0
- Proving design ideas correct: Method

4 - Example: gas burner

Duration Calculus: Formulae

Duration Calculus: Overview

We will introduce four syntactical categories (and abbreviations):
(i) Symbols:
(ii) State Assertions:

$$
\overbrace{\text { true }, \text { false },=,<,>, \leq, \geq}^{p, q}, \quad f, g, \quad \overbrace{X, Y, Z, \quad d,} x, y, z,
$$

(iii) Terms:

$$
P::=0|1| X=d \quad \neg P_{1} \mid P_{1} \wedge P_{2}
$$

(iv) Formulae:

(v) Abbreviations:

$$
\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.
$$

- The set of DC formulae is defined by the following grammar:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\dashv F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \odot F_{1}\right| F_{1} ; F_{2}
$$

where p is a predicate symbol, θ_{i} are terms, and x is a global variable.

- chop operator: ';'
- atomic formula: $p\left(\theta_{1}, \ldots, \theta_{n}\right)$
- rigid formula: all terms are rigid (no l, no \sqrt{P})
- chop free: ';' doesn't occur
- usual notion of free and bound (global) variables

- Note: quantification only over (first-order) global variables, not over (second-order) state variables.

$$
C_{\triangle} \exists x \in \sqrt{x}>3 \quad \text { NOT }
$$

Formulae: Priority Groups

- To avoid parentheses, we define the following five priority groups from highest to lowest priority (or precedence):

- ᄀ	(negation)
- ;	(chop)
- \wedge, \vee	(and/or)
- $\Longrightarrow, \Longleftrightarrow$	(implication/equivalence)
- \exists, \forall	(quantifiers)

- $\forall x \bullet F \wedge G$

Syntactic Substitution...

... of a term θ for a variable x in a formula F.

- We use

$$
F[x:=\theta]
$$

to denote the formula that results from performing the following steps:
(i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F}
appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in term θ,
(ii) textually replace all free occurrences of x in \tilde{F} by θ.

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

- We use

$$
F[x:=\theta]
$$

to denote the formula that results from performing the following steps:
(i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in term θ,
(ii) textually replace all free occurrences of x in \tilde{F} by θ.

Example:

- $\theta_{1}:=\ell, \quad F\left[x:=\theta_{1}\right]=(\ell \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge \ell=y+z)$

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

- We use

$$
F[x:=\theta]
$$

to denote the formula that results from performing the following steps:
(i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in term θ,
(ii) textually replace all free occurrences of x in \tilde{F} by θ.

Example:

- $\theta_{1}:=\ell, \quad F\left[x:=\theta_{1}\right]=(\ell \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge \ell=y+z)$

$$
\text { - } \theta_{2}:=\ell+z, \quad F \quad=(x \quad \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge x \quad=y+z)
$$

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

- We use

$$
F[x:=\theta]
$$

to denote the formula that results from performing the following steps:
(i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F}
appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$
for some z occurring in term θ,
(ii) textually replace all free occurrences of x in \tilde{F} by θ.

Example:

- $\theta_{1}:=\ell, \quad F\left[x:=\theta_{1}\right]=(\ell \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge \ell=y+z)$

- $\theta_{2}:=\ell+z, \quad F\left[x:=\theta_{2}\right]=(\ell+z \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge \ell+z=y+z)$

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

- We use

$$
\underset{\substack{x}}{x}:=\theta]
$$

to denote the formula that results from performing the following steps:
(i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in term θ,
(ii) textually replace all free occurrences of x in \tilde{F} by θ.

Example:

- $\theta_{1}:=\ell, \quad F\left[x:=\theta_{1}\right]=(\ell \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge \ell=y+z)$
- $\theta_{2}:=\ell+z, \quad F\left[x:=\theta_{2}\right]=(\ell+z \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge \ell+z=y+z) X$
- $\left.F\left[x:=\theta_{2}\right]=\ell+z \geq y \Longrightarrow \exists \tilde{z} \bullet \tilde{z} \geq 0 \wedge \ell+z=y+\underset{\sim}{z}\right)$

Formulae: Semantics

- The semantics of a formula is a function

$$
\mathcal{I} \llbracket F \rrbracket: \text { Val } \times \text { Intv } \rightarrow\{\mathrm{tt}, \mathrm{ff}\}
$$

$\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])$: truth value of F under interpretation \mathcal{I} and valuation \mathcal{V} in the interval $[b, e]$.

- $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e\rfloor)$ is defined inductively over the structure of F :
$\mathcal{I} \llbracket p\left(\theta_{1}, \ldots, \theta_{n}\right) \rrbracket(\mathcal{V},[b, e])=\hat{p}\left(\mathcal{I} \llbracket \theta_{1} \rrbracket(\mathcal{V},[b, e]), \ldots, \mathcal{I} \llbracket \theta_{n} \rrbracket(\mathcal{V},[b, e])\right)$, ste

$$
\begin{aligned}
& \mathcal{I} \llbracket \neg F_{1} \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} \text { iff } \mathcal{I} \llbracket F_{1} \rrbracket(\mathcal{V},[b, e])=\mathrm{ff}, \\
& \mathcal{I} \llbracket F_{1} \wedge F_{2} \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} \text { iff } \mathcal{I} \llbracket F_{i} \rrbracket(\mathcal{V},[b, e])=\mathrm{tt}, i \in\{1,2\}, \\
& \mathcal{I} \llbracket \forall x \bullet F_{1} \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} \text { iff for all } \stackrel{R}{a}, \\
& \mathcal{I} \llbracket F_{1}[x:=a] \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} \\
& \mathcal{I} \llbracket F_{1} ; F_{2} \rrbracket(\mathcal{V},[b, e])=\text { iff there is an } m \in[b, e] \text { such that } \\
& \mathcal{I} \llbracket F_{1} \rrbracket(\mathcal{V},[b, m])=\mathrm{tt} \text { and } \mathcal{I} \llbracket F_{2} \rrbracket(\mathcal{V},[m, e])=\mathrm{tt} .
\end{aligned}
$$

$$
F:=\int L=0 ; \int L=1
$$

- $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[0,2])=\mathrm{tt}$

Proof:

- Choose $m=1$ as chop point.

Formulae: Example

$$
\equiv\left(\left(\int L\right)=0\right) ; \quad\left(\left(\int L\right)=1\right) \equiv=\left(\left(\int L\right), 0\right) ;=\left(\left(\int L\right), 1\right)
$$

- $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[0,2])=\mathrm{tt}$

Proof:

- Choose $m=1$ as chop point.

$$
\begin{aligned}
& \equiv\left(\left(\int L\right)=0\right) ;\left(\left(\int L\right)=1\right) \equiv \underbrace{=\left(\left(\int L\right), 0\right)}_{F_{\imath}} ; \underbrace{=\left(\left(\int L\right), 1\right)}_{F_{<}}
\end{aligned}
$$

- $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[0,2])=\mathrm{tt}$

Proof:

- Choose $m=1$ as chop point. Then
- $\mathcal{I} \llbracket=\left(\left(\int L\right), 0\right) \rrbracket(\mathcal{V},[0,1])=\hat{=}\left(\mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[0,1]), \mathcal{I} \llbracket 0 \rrbracket(\mathcal{V},[0,1])\right)$

$$
=\hat{=}\left(\int_{0}^{1} L_{\mathcal{I}}(t) d t, \quad \hat{0}\right)=\hat{=}(0,0)=\mathrm{tt},
$$

Formulae: Example

$$
\equiv\left(\left(\int L\right)=0\right) ;\left(\left(\int L\right)=1\right) \equiv=\left(\left(\int L\right), 0\right) ;=\left(\left(\int L\right), 1\right)
$$

$\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[0,2])=\mathrm{tt} \underbrace{}_{\int_{0,4}^{2} L_{I}}(t) d t=1$
Proof:

- Choose $m=1$ as chop point. Then
- $\mathcal{I} \llbracket=\left(\left(\int L\right), 0\right) \rrbracket(\mathcal{V},[0,1])=\hat{=}\left(\mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[0,1]), \mathcal{I} \llbracket 0 \rrbracket(\mathcal{V},[0,1])\right)$

$$
=\hat{=}\left(\int_{0}^{1} L_{\mathcal{I}}(t) d t, \quad \hat{0}\right)=\hat{=}(0,0)=\mathrm{tt},
$$

- and $\mathcal{I} \llbracket=\left(\quad\left(\int L\right), \quad 1 \quad\right) \rrbracket(\mathcal{V},[1,2])$

$$
=\hat{=}\left(\quad \mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[1,2]), \quad \mathcal{I} \llbracket 1 \rrbracket(\mathcal{V},[1,2]) \quad\right)=\hat{=}(1,1)=\mathrm{tt},
$$

$$
F:=\int L=0 ; \int L=1
$$

$$
\equiv\left(\left(\int L\right)=0\right) ;\left(\left(\int L\right)=1\right) \equiv=\left(\left(\int L\right), 0\right) ;=\left(\left(\int L\right), 1\right)
$$

- $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[0,2])=\mathrm{tt}$

Proof:

- Choose $m=1$ as chop point. Then
- $\mathcal{I} \llbracket=\left(\left(\int L\right), 0\right) \rrbracket(\mathcal{V},[0,1])=\hat{=}\left(\mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[0,1]), \mathcal{I} \llbracket 0 \rrbracket(\mathcal{V},[0,1])\right)$

$$
=\hat{=}\left(\int_{0}^{1} L_{\mathcal{I}}(t) d t, \quad \hat{0}\right)=\hat{=}(0,0)=\mathrm{tt}
$$

- and $\mathcal{I} \llbracket=\left(\quad\left(\int L\right), \quad 1\right) \rrbracket(\mathcal{V},[1,2])$

$$
=\hat{=}\left(\quad \mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[1,2]), \quad \mathcal{I} \llbracket 1 \rrbracket(\mathcal{V},[1,2]) \quad\right)=\hat{=}(1,1)=\mathrm{tt},
$$

- Is the chop point m unique?

Formulae: Example

- $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[0,2])=\mathrm{tt}$

Proof:

- Choose $m=1$ as chop point. Then
- $\mathcal{I} \llbracket=\left(\left(\int L\right), 0\right) \rrbracket(\mathcal{V},[0,1])=\hat{=}\left(\mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[0,1]), \mathcal{I} \llbracket 0 \rrbracket(\mathcal{V},[0,1])\right)$

$$
\left.\begin{array}{ll}
=\hat{=}\left(\int_{0}^{1} L_{\mathcal{I}}(t) d t,\right. & \hat{0}
\end{array}\right)=\hat{=}(0,0)=\mathrm{tt}, \quad \text { No, all } m \in\{0,1\}, ~ \begin{array}{ll}
\text { are pooper chop points } \\
\text { and } \mathcal{I} \llbracket=\left(\left(\int L\right),\right. & 1)) \rrbracket(\mathcal{V},[1,2])
\end{array} \quad \text { (and only those) } \quad l l
$$ $=\hat{=}\left(\quad \mathcal{I} \llbracket \int L \rrbracket(\mathcal{V},[1,2]), \quad \mathcal{I} \llbracket 1 \rrbracket(\mathcal{V},[1,2\}) \quad\right)=\hat{=}(1,1)=\mathrm{tt}$,

- Is the chop point m unique? $\operatorname{IU} \sqrt{7} L<1 ; \int \angle<1 \mathbb{J}(\nu,[0,7])=\mathbb{A}$
- Would the chop point for formula $\int \neg L=1$; $\int L=1$ be unique?

```
- rigid formula: all terms are rigid
- rigid term: no length or integral operators
- chop free: ';' doesn't
    occur
```

Remark 2.10. [Rigid and chop-free] Let F be a duration formula, \mathcal{I} an interpretation, \mathcal{V} a valuation, and $[b, e] \in \operatorname{Intv}$.

- If F is rigid, then

$$
\forall\left[b^{\prime}, e^{\prime}\right] \in \operatorname{Intv}: \mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[\underbrace{\left.b^{\prime}, e^{\prime}\right]}) .
$$

- If F is chop-free or θ is rigid, then in the calculation of the semantics of F, every occurrence of θ denotes the same value.

Substitution Lemma

Lemma 2.11. [Substitution]
Consider a formula F, a global variable x, and a term θ such that F is chopfree or θ is rigid.
Then for all interpretations \mathcal{I}, valuations \mathcal{V}, and intervals $[b, e]$,

$$
\mathcal{I} \llbracket F[x:=\theta] \rrbracket(\mathcal{V},[b, e])=\mathcal{I} \llbracket F \rrbracket(\underbrace{\mathcal{V}[x:=a],[b, e])}
$$

where $a=\mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[b, e])$.

- Negative Example: $F:=(\ell=x) ;(\ell=x) \Longrightarrow(\ell=2 \cdot x) \quad \theta:=\ell$
- $\mathbb{L} \mp[x:=l] \mathbb{D}(U,[b, e])=エ \mathbb{C}(l=e)_{i}(l=e) \Rightarrow(l=2 \cdot l) \mathbb{J}(\nu,[b, e])$
\rightarrow yields $f f$ for $b<e$
e I【FI $\left(\nu\left[x_{i}=a\right],[b, e]\right)=t t$ (even valid)

We will introduce four syntactical categories (and abbreviations):
(i) Symbols:

$$
\overbrace{\text { true }, \text { false },=,<,>, \leq, \geq}^{p, q}, \quad f, g, \quad X, Y, Z, \quad d, \quad x, y, z,
$$

(ii) State Assertions:

$$
P::=0|1| X=d\left|\neg P_{1}\right| P_{1} \wedge P_{2}
$$

(iii) Terms:

$$
\theta::=x|\ell| \int P \mid f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

(iv) Formulae:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\neg F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \bullet F_{1}\right| F_{1} ; F_{2}
$$

(v) Abbreviations:
$\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.$

- $\rceil:=\ell=0$ state assertion
- $\mid\ulcorner P\rceil:=(\rho \stackrel{\circ}{P}=\ell \wedge \wedge(\ell>0)$
- $\lceil P\rceil^{t}:=\lceil P\rceil \wedge \ell=t$
- $\lceil P\rceil \leq t:=\lceil P\rceil \wedge \ell \leq t$
dammed
- ΔF := true ; F; true
- $\square F:=\neg \diamond \neg F$
${ }_{\text {box }}$
(point interval) $\xrightarrow{\text { (almost everywhere) }}$
(for time t) (up to time t)
(for some subinterval)
(for all subintervals)
- $\Delta T P\}$ not satisfied on any point interval

Abbreviations: Examples

Duration Calculus: Preview

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Strangest operators: โForm 7

- almost everywhere - Example: $\lceil G\rceil$ (Holds in a given interval $[b, e]$ iff the gas valve is open almost everywhere.)
- chop-' Example: $(\lceil\neg I\rceil ;\lceil I\rceil ;\lceil\neg I\rceil) \Longrightarrow \ell \geq 1$ (Ignition phases last at least one time unit.)
- integral - Example: $\ell \geq 60 \Longrightarrow \int L \leq \frac{\ell}{20}$

(At most 5% leakage time within intervals of at least 60 time units.)

Content

```
- Formulae
    - syntax, priority groups
    syntactic substitution
    semantics
    well-definedness
    remarks, substitution lemma
    - DC Abbreviations
    \- point interval, almost everywhere
    `| for some subinterval / for all subintervals
```

 - Validity, Satisfiability, Realisability
 (e realisability / validity from 0
 - Proving design ideas correct: Method
 - Example: gas burner

DC Validity, Satisfiability, Realisability

Validity, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V},[b, e] \models F \quad$ (read: F holds in $\mathcal{I}, \mathcal{V},[b, e]$) iff $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathrm{tt}$.
- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V},[b, e]$.
- $\mathcal{I}, \mathcal{V} \models F \quad($ read: \mathcal{I} and \mathcal{V} realise $F) \quad$ iff $\quad \forall[b, e] \in \operatorname{lntv}: \mathcal{I}, \mathcal{V},[b, e] \models F$.
- F is called realisable iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F \quad($ read $: \mathcal{I}$ realises $F) \quad$ iff $\quad \forall \mathcal{V} \in \operatorname{Val}: \mathcal{I}, \mathcal{V} \models F$.
- $\models F \quad$ (read: F is valid) iff

Remark 2.13. For all DC formulae F,

- F is satisfiable if and only if $\neg F$ is not valid,
F is valid if and only if $\neg F$ is not satisfiable.
- If F is valid then F is realisable, but not vice versa.
- If F is realisable then F is satisfiable, but not vice versa.

Examples: Valid? Realisable? Satisfiable?

- $\ell \geq 0$
- $\ell=\int 1$
- $\ell=30 \Longleftrightarrow \ell=10 ; \ell=20$
- $((F ; G) ; H) \Longleftrightarrow(F ;(G ; H))$
- $\int L \leq x$
- $\ell=2$
- $\mathcal{I}, \mathcal{V} \models_{0} F \quad$ (read: \mathcal{I} and \mathcal{V} realise F from 0$) \quad$ iff

$$
\forall t \in \text { Time }: \mathcal{I}, \mathcal{V},[0, t] \models F \text {. }
$$

- F is called realisable from 0 iff some \mathcal{I} and \mathcal{V} realise F from 0 .
- Intervals of the form $[0, t]$ are called initial intervals.
- $\mathcal{I} \models_{0} F \quad$ (read: \mathcal{I} realises F from 0$) \quad$ iff

$$
\forall \mathcal{V} \in \operatorname{Val}: \mathcal{I}, \mathcal{V} \models_{0} F .
$$

- $\models_{0} F$ (read: F is valid from 0) iff

Remark. For all interpretations \mathcal{I}, valuations \mathcal{V}, and $D C$ formulae F,
(i) $\mathcal{I}, \mathcal{V} \models F$ implies $\mathcal{I}, \mathcal{V} \models_{0} F$,
(ii) if F is realisable then F is realisable from 0 , but not vice versa,
(iii) F is valid iff F is valid from 0 .

- Formulae
- syntax, priority groups
- syntactic substitution
(e semantics
- well-definedness
- (emarks, substitution lemma
- DC Abbreviations
- - point interval, almost everywhere
- for some subinterval / for all subintervals
- Validity, Satisfiability, Realisability
- realisability / validity from 0
- Proving design ideas correct: Method
- Example: gas burner

Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC

In order to prove a controller design correct wrt. a specification:
(i) Choose observables 'Obs'.
(ii) Formalise the requirements 'Spec'
as a conjunction of DC formulae (over 'Obs').
(iii) Formalise a controller design 'Ctrl' as a conjunction of DC formulae (over 'Obs').
(iv) We say 'Ctrl' is correct (wrt. 'Spec') iff

$$
\models_{0} \mathrm{Ctrl} \Longrightarrow \text { Spec, }
$$

so "just" prove $\models_{0} \mathrm{Ctrl} \Longrightarrow$ Spec.

Gas Burner Revisited

(i) Choose observables:

- $F:\{0,1\}$: value 1 models "flame sensed now" (input)
- $G:\{0,1\}$: value 1 models "gas valve is open now" (output)
- define $L:=G \wedge \neg F$ to model leakage
(ii) Formalise the requirement:

$$
\operatorname{Req}:=\square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)
$$

"in each interval of length at least 60 time units, at most 5% of the time leakage"
(iii) Formalise controller design ideas:

- Des-1 := $\square(\lceil L\rceil \Longrightarrow \ell \leq 1)$
"leakage phases last for at most one time unit"
- Des-2 := $\square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil \Longrightarrow \ell>30)$
"non-leakage phases between two leakage-phases last at least 30 time units"
(iv) Prove correctness, i.e. prove $\models($ Des $-1 \wedge$ Des- $2 \Longrightarrow$ Req $)$.
(Or do we want " \models_{0} "...?)

Content

\author{

- Formulae
 - syntax, priority groups
 - syntactic substitution
 - semantics
 - well-definedness
 (- remarks, substitution lemma
}
- DC Abbreviations
-(point interval, almost everywhere
- for some subinterval / for all subintervals
- Validity, Satisfiability, Realisability
- realisability / validity from 0
- Proving design ideas correct: Method
- Example: gas burner

Tell Them What You've Told Them. . .

- Duration Calculus Formulae
- using, e.g., the chop operator
are evaluated for intervals and valuations.
The semantics of a DC formula is a truth value.
- The following abbreviations are sometimes useful
- point interval (\rceil), almost everywhere ($(\Gamma\rceil\rceil$),
- for some subinterval $(\diamond F)$, for all subintervals $(\square F)$
- DC Formulae have notions of
- satisfiability and validity (as usual),
- realisability ("for all subintervals")
- also: from 0
- Outlook on next lecture: proving design ideas correct wrt. requirements.

References

References

Olderog, E.-R. and Dirks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

$$
\begin{aligned}
& \frac{\square A M M}{\text { - aral / written }} \\
& \text { - DATE } \\
& \text { (nd / late March) } \\
& (\text { Tue To fix on }
\end{aligned}
$$

