Real-Time Systems Lecture 7: DC Properties II

2017-11-16

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

```
RDC +\ell=x,\forallx in Continous Time
    Outline of the proof
    Recall: two-counter machines (2-CM)
    (- states and commands (syntax)
    - configurations and computations (semantics)
    Encoding configurations in DC
    - initial configuration of a 2-CM
        Encoding transitions in DC
        - increment counter,
        - decrement counter,
        - and some helper formulae.
        - Satisfiability and Validity
    -Discussion
```

7-2017-11-16 - Scontent -

Fragment	Discrete Time	Continous Time
RDC	decidable \checkmark	decidable
RDC $+\ell=r$	decidable for $r \in \mathbb{N}$	undecidable for $r \in \mathbb{R}^{+}$
RDC $+\int P_{1}=\int P_{2}$	undecidable	undecidable
RDC $+\ell=x, \forall x$	undecidable	undecidable $\quad \checkmark$
DC	$-\cdots-$	$-\cdots-$

Decidability Results for RDC in Continuous Time

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2} \mid F_{1} ; F_{2}
$$

where P is a state assertion with boolean observables only.

From now on: "RDC $+\ell=x, \forall x$ "

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2}\left|F_{1} ; F_{2}\right| \ell=1|\ell=x| \forall x \bullet F_{1}
$$

Undecidability of Satisfiability/Realisability from 0

Theorem 3.10.
The realisability from 0 problem for DC with continuous time is undecidable, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.

Reduce divergence of two-counter machines to realisability from O :

- Given a two-counter machine \mathcal{M} with final state $q_{f i n}$,
- construct a DC formula $F(\mathcal{M}):=\operatorname{encoding}(\mathcal{M})$
- such that
\mathcal{M} diverges if and only if the DC formula

$$
F(\mathcal{M}) \wedge \neg \diamond\left\lceil q_{f i n}\right\rceil
$$

is realisable from 0 .

- If realisability from O was (semi-)decidable, divergence of two-counter machines would be (which it isn't).

A two-counter machine is a structure

$$
\mathcal{M}=\left(\mathcal{Q}, q_{0}, q_{\text {fin }}, \text { Prog }\right)
$$

where

- \mathcal{Q} is a finite set of states,
- comprising the initial state q_{0} and the final state $q_{\text {fin }}$
- Prog is the machine program, i.e. a finite set of commands of the form

$$
\begin{array}{ll}
\underbrace{q: \text { inc } c_{i}: q^{\prime}}_{q: x_{i}:=x_{1}+1 ;} \text { goto } q^{\prime} & \text { and } \underbrace{q: \operatorname{dec}_{i}: q^{\prime}, q^{\prime \prime},}
\end{array} \quad i \in\{1,2\} . \text { if }\left(x_{1}=0\right), ~ \begin{array}{ll}
\text { goto } q^{\prime} \\
q: x_{2}:=x_{2}+1 ; & \text { goto } q^{\prime} \quad
\end{array}
$$

- We assume deterministic 2CM: for each $q \in \mathcal{Q}$, at most one command starts in q, and $q_{f i n}$ is the only state where no command starts.

2CM Configurations and Computations

- a configuration of \mathcal{M} is a triple $K=\left(q, n_{1}, n_{2}\right) \in \mathcal{Q} \times \mathbb{N}_{0} \times \mathbb{N}_{0}$.
- The transition relation " \vdash " on configurations is defined as follows:

Command	Semantics: $K \vdash K^{\prime}$
$q: \operatorname{inc}_{1}: q^{\prime}$	$\left(q, n_{1}, n_{2}\right) \vdash\left(q^{\prime}, n_{1}+1, n_{2}\right)$
$q: \operatorname{dec}_{1}: q^{\prime}, q^{\prime \prime}$	$\left(q, 0, n_{2}\right) \vdash\left(q^{\prime}, 0, n_{2}\right)$
	$\left(q, n_{1}+1, n_{2}\right) \vdash\left(q^{\prime \prime}, n_{1}, n_{2}\right)$
$q:$ inc $_{2}: q^{\prime}$	$\left(q, n_{1}, n_{2}\right) \vdash\left(q^{\prime}, n_{1}, n_{2}+1\right)$
$q: \operatorname{dec}_{2}: q^{\prime}, q^{\prime \prime}$	$\left(q, n_{1}, 0\right) \vdash\left(q^{\prime}, n_{1}, 0\right)$
	$\left(q, n_{1}, n_{2}+1\right) \vdash\left(q^{\prime \prime}, n_{1}, n_{2}\right)$

- The (!) computation of \mathcal{M} is a finite sequence of the form
(" \mathcal{M} halts")

$$
K_{0}=\left(q_{0}, 0,0\right) \vdash K_{1} \vdash K_{2} \vdash \cdots \vdash\left(q_{f i}, n_{1}, n_{2}\right)
$$

or an infinite sequence of the form

$$
K_{0}=\left(q_{0}, 0,0\right) \vdash K_{1} \vdash K_{2} \vdash \ldots
$$

- $\mathcal{M}=\left(\mathcal{Q}, q_{0}, q_{f i n}\right.$, Prog $)$
- commands of the form $q:$ inc $_{i}: q^{\prime}$ and $q: \operatorname{dec}_{i}: q^{\prime}, q^{\prime \prime}, i \in\{1,2\}$
- configuration $K=\left(q, n_{1}, n_{2}\right) \in \mathcal{Q} \times \mathbb{N}_{0} \times \mathbb{N}_{0}$.
Command Semantics: $K \vdash K^{\prime}$ $q:$ inc $_{1}: q^{\prime}$ $\left(q, n_{1}, n_{2}\right) \vdash\left(q^{\prime}, n_{1}+1, n_{2}\right)$ $q: d e c_{1}: q^{\prime}, q^{\prime \prime}$ $\left(q, 0, n_{2}\right) \vdash\left(q^{\prime}, 0, n_{2}\right)$ $\left(q, n_{1}+1, n_{2}\right) \vdash\left(q^{\prime \prime}, n_{1}, n_{2}\right)$ $q:$ inc $_{2}: q^{\prime}$ $\left(q, n_{1}, n_{2}\right) \vdash\left(q^{\prime}, n_{1}, n_{2}+1\right)$ $q: \operatorname{dec}_{2}: q^{\prime}, q^{\prime \prime}$ $\left(q, n_{1}, 0\right) \vdash\left(q^{\prime}, n_{1}, 0\right)$ $\left(q, n_{1}, n_{2}+1\right) \vdash\left(q^{\prime \prime}, n_{1}, n_{2}\right)$

M_{1}

- $\mathcal{Q}=\left\{q_{0}, q_{1}, q_{f i n}\right\}$
- Prog $=\left\{q_{0}: i n c_{1}: q_{1}, q_{1}: i n c_{1}: q_{\text {fin }}\right\}$

$$
\begin{aligned}
& \left(q_{0}, 0,0\right) \\
& T \Theta 1 \\
& \left(q_{1}, 1,0\right) \\
& T(2) \\
& \left(q_{f_{n}}, 2,0\right) \quad \& M_{1} \text { halts }
\end{aligned}
$$

- $\mathcal{Q}=\left\{q_{0}, q_{f i n}\right\}$
- $\operatorname{Prog}=\left\{q_{0}: i n c_{2}: q_{0}\right\}$
($q_{0}, 0,0$)
($\left.q_{0}, 0,1\right)$
T T®
($q_{0}, 0,2$) T $\Delta \mu_{2}$
\vdots
diveger $11 / 32$

Reduction to 2-CM: Idea

2CM \mathcal{M} diverges
iff
exists $\pi: K_{0} \vdash K_{1} \vdash \ldots$
iff
exists interpretation

" \mathcal{I} describes π "
and
$\mathcal{I} \models{ }_{0} F(\mathcal{M}) \wedge \neg \diamond\left\lceil q_{f i n}\right\rceil$
$F(\mathcal{M})$ intuitively specifies:

- $[0, d]$ encodes $\left(q_{0}, 0,0\right)$,
- each $[n \cdot d,(n+1) \cdot d]$ encodes a configuration,
- $[n \cdot d,(n+1) \cdot d]$ and $[(n+1) \cdot d,(n+2) \cdot d]$ are in \vdash-relation,
- if $q_{f i n}$ is reached, we stay there

Reducing Divergence to DC realisability: Idea

${ }^{\prime \prime}\left(2, u_{1}, n_{2}\right)$

- A single configuration K of \mathcal{M} can be encoded in an interval of length 4; being an encoding interval can be characterised by a DC formula.
- An interpretation on 'Time' encodes the computation of \mathcal{M} if - each interval $[4 n, 4(n+1)], n \in \mathbb{N}_{0}$, encodes a configuration K_{n},
- each two subsequent intervals

$$
[4 n, 4(n+1)] \text { and }[4(n+1), 4(n+2)], n \in \mathbb{N}_{0}
$$

encode configurations $K_{n} \vdash K_{n+1}$ in transition relation.

- Being an encoding of the run can be characterised by a DC formula $F(\mathcal{M})$.
- Then \mathcal{M} diverges if and only if $F(\mathcal{M}) \wedge \neg \diamond\left\lceil q_{f i n}\right\rceil$ is realisable from 0 .

Encoding Configurations

15/32

Encoding Configurations

Examples:

- $K=(q, 2,3)$

$$
\left(\begin{array}{c}
\lceil q\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\binom{\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\lceil B\rceil}{\wedge=1} ;\left(\begin{array}{c}
\lceil X\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil \\
\wedge \\
\ell=1
\end{array}\right)
$$

- We use Obs $=\{o b s\}$ with
$\mathcal{D}($ obs $)=\mathcal{Q}_{\mathcal{M}} \dot{\dot{U}}\left\{C_{1}, C_{2}, B, X\right\}$.

Examples:

- $K=(q, 2,3)$
$\left(\begin{array}{c}\lceil q\rceil \\ \wedge \\ \ell=1\end{array}\right) ;\binom{\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\lceil B\rceil}{\wedge=1} ;\left(\begin{array}{c}\lceil X\rceil \\ \wedge \\ \ell=1\end{array}\right) ;\left(\begin{array}{c}\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil \\ \wedge \\ \ell=1\end{array}\right)$
- $K_{0}=\left(q_{0}, 0,0\right)$

$$
\left(\begin{array}{c}
\left\lceil q_{0}\right\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil B\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil X\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil B\rceil \\
\wedge \\
\ell=1
\end{array}\right)
$$

or, using abbreviations, $\left\lceil q_{0}\right\rceil^{1} ;\lceil B\rceil^{1} ;\lceil X\rceil^{1} ;\lceil B\rceil^{1}$.

Formula Construction for Given 2-CM

In the following, we give DC formulae describing

- the initial configuration: init,
- the general form of configurations: keep,
- the transitions between configurations: $\left.F\left(q: i n c_{i}\right): q^{\prime}\right)$ and $F\left(q: d e c_{i}: q^{\prime}\right)$,
- the handling of the final state.
$F(\mathcal{M})$ is the conjunction of all these formulae:

$$
F(\mathcal{M})=i_{n i t} \wedge \text { keep } \wedge \ldots
$$

$\wedge \bigwedge_{q: i n c_{i}: q^{\prime} \in \operatorname{Prog}} F\left(q:\right.$ inc $\left._{i}: q^{\prime}\right)$
$\wedge \bigwedge_{q: d e c_{i}: q^{\prime} \in \operatorname{Prog}} \underset{\underbrace{F}\left(q: d e c_{i}: q^{\prime}\right)}{ }$

Initial and General Configurations

$$
\text { init }: \Longleftrightarrow\left(\ell \geq 4 \Longrightarrow\left\lceil q_{0}\right\rceil^{1} ;\lceil B\rceil^{1} ;\lceil X\rceil^{1} ;\lceil B\rceil^{1} ; \text { true }\right)
$$

$$
\begin{aligned}
\text { keep }: \Longleftrightarrow \square & \Longleftrightarrow\left(\lceil Q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4\right) \\
& \Longrightarrow\left(\ell=4 ;\lceil Q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1}\right)
\end{aligned}
$$

where $Q:=\neg\left(X \vee C_{1} \vee C_{2} \vee B\right)$.

$$
\begin{aligned}
& \operatorname{copy}(\stackrel{\circ}{F},\{\overbrace{P_{1}, \ldots, P_{n}}^{\text {formah }}\}): \Longleftrightarrow \\
& \forall c, d \bullet \square\left(\left((F \wedge \ell=c) ;\left(\left\lceil P_{1} \vee \cdots \vee P_{n}\right\rceil \wedge \ell=d\right) ;\left\lceil P_{1}\right\rceil ; \ell=4\right)\right. \\
& \Longrightarrow\left(\ell=c+d+4 ;\left\lceil P_{1}\right\rceil\right) \\
& \text { ^... } \\
& \forall c, d \bullet \square\left((F \wedge \ell=c) ;\left(\left\lceil P_{1} \vee \cdots \vee P_{n}\right\rceil \wedge \ell=d\right) ;\left\lceil P_{n}\right\rceil ; \ell=4\right. \\
& \Longrightarrow \ell=c+d+4 ;\left\lceil P_{n}\right\rceil
\end{aligned}
$$


```
\(q: i n c_{1}: q^{\prime}(\) Increment \()\)
```

(i) Change state

$\square\left(\lceil q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4 \Longrightarrow \ell=4 ;\left\lceil q^{\prime}\right\rceil^{1} ;\right.$ true $)$

(ii) Increment counter

$q: i n c_{1}: q^{\prime}($ Increment $)$
(i) Keep rest of first counter

$$
\operatorname{copy}(\underbrace{\lceil q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil ;\left\lceil C_{1}\right\rceil}_{\mathcal{T}}, \underbrace{\left\{B, C_{1}\right\}}_{\left\{P_{1}, P_{2}\right\}})
$$

(ii) Leave second counter unchanged

$$
\operatorname{copy}\left(\lceil q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil ;\lceil X\rceil^{1},\left\{B, C_{2}\right\}\right)
$$

```
\(\xrightarrow[\text { (i) If zero }]{q: \operatorname{dec}_{1}: q^{\prime}, q^{\prime \prime} \text { (Decrement) }}\)
\[
\square\left(\lceil q\rceil^{1} ;\lceil B\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4 \Longrightarrow \ell=4 ;\left\lceil q^{\prime}\right\rceil^{1} ;\lceil B\rceil^{1} ; \text { true }\right)
\]
```



```
\[
\begin{aligned}
\forall d \bullet \square\left(\lceil q\rceil^{1}\right. & ;\left(\lceil B\rceil ;\left\lceil C_{1}\right\rceil \wedge \ell=d\right) ;\lceil B\rceil ;\left\lceil B \vee C_{1}\right\rceil ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4 \\
& \left.\Longrightarrow \ell=4 ;\left\lceil q^{\prime \prime}\right\rceil^{1} ;\lceil B\rceil^{d} ; \text { true }\right)
\end{aligned}
\]
```

(iii) Keep rest of first counter

$$
\operatorname{copy}\left(\lceil q\rceil^{1} ;\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\left\lceil B_{1}\right\rceil,\left\{B, C_{1}\right\}\right)
$$

(iv) Leave second counter unchanged

$$
\operatorname{copy}\left(\lceil q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil ;\lceil X\rceil^{1},\left\{B, C_{2}\right\}\right)
$$

Final State

M diverges
if

is realisable from 0

Satisfiability / Valididty

Satisfiability

- Following Chaochen and Hansen (2004) we can observe that
\mathcal{M} halts if and only if the DC formula $F(\mathcal{M}) \wedge \diamond\left\lceil q_{f i n}\right\rceil$ is satisfiable.
This yields

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecidable.
(It is semi-decidable.)

- Furthermore, by taking the contraposition, we see

\mathcal{M} diverges	if and only if	\mathcal{M} does not halt
	if and only if	$F(\mathcal{M}) \wedge \neg \diamond\left\lceil q_{f i n}\right\rceil$ is not satisfiable

- Thus whether a DC formula is not satisfiable is not decidable, not even semi-decidable.
- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):
- Suppose there were such a calculus \mathcal{C}.
- By Lemma 2.22 it is semi-decidable whether a given DC formula F is a theorem in \mathcal{C}.
- By the soundness and completeness of \mathcal{C},
F is a theorem in \mathcal{C} if and only if F is valid.
- Thus it is semi-decidable whether F is valid. Contradiction.

Discussion

- Note: the DC fragment defined by the following grammar is sufficient for the reduction

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2}\left|F_{1} ; F_{2}\right| \ell=1|\ell=x| \forall x \bullet F_{1}
$$

P a state assertion, x a global variable.

- Formulae used in the reduction are abbreviations:

$$
\begin{aligned}
\ell=4 & \Longleftrightarrow \ell=1 ; \ell=1 ; \ell=1 ; \ell=1 \\
\ell \geq 4 & \Longleftrightarrow \ell=4 ; \text { true } \\
\ell=x+y+4 & \Longleftrightarrow \ell=x ; \ell=y ; \ell=4
\end{aligned}
$$

- Length 1 is not necessary - we can use $\ell=z$ instead, with fresh z.
- This is RDC augmented by " $\ell=x$ " and " $\forall x$ ", which we denote by $\operatorname{RDC}+\ell=x, \forall x$.

Content

$$
\begin{aligned}
& \text { RDC }+\ell=x, \forall x \text { in Continous Time } \\
& \text { Outline of the proof } \\
& \text { Recall: two-counter machines (2-CM) } \\
& \text { Encodes and commands (syntax) } \\
& \text { Encoding transitions in DC } \\
& \text { initial configuration of a 2-CM } \\
& \text { Satisfiability and Validity } /
\end{aligned}
$$

- For Restricted DC plus $\ell=x$ and $\forall x$ in continuous time:
- satisfiability is undecidable.
- Proof idea: reduce to halting problem of two-counter machines.
- For full DC, it doesn't get better.

Content

Introduction

- Observables and Evolutions
- Timed Automata (TA), Uppaal
- Duration Calculus (DC) $\sqrt{ }$
- Networks of Timed Automata
- Semantical Correctness Proofs $\sqrt{ }$
- Region/Zone-Abstraction
- DC Decidability
- TA model-checking
- DC Implementables
- Extended Timed Automata
- PLC-Automata
- Undecidability Results obs : Time $\rightarrow \mathscr{D}(o b s)$

$$
\left\langle o b s_{0}, \nu_{0}\right\rangle, t_{0} \xrightarrow{\lambda_{0}}\left\langle o b s_{1}, \nu_{1}\right\rangle, t_{1} \ldots
$$

- Automatic Verification..

....whether a TA satisfies a DC formula, observer-based

- Recent Results:
- Timed Sequence Diagrams, or Quasi-equal Clocks, or Automatic Code Generation, or ...

References

References

Chaochen, Z. and Hansen, M. R. (2004). Duration Calculus: A Formal Approach to Real-Time Systems. Monographs in Theoretical Computer Science. Springer-Verlag. An EATCS Series.

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

