Real-Time Systems Lecture 11: Timed Automata

2017-12-07

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- Timed Automata Syntax
- • Channels, Actions, Clock Constraints
- • Pure Timed Automaton
- Graphical Representation of TA
- Timed Automata (Operational) Semantics
- -- Clock Valuations, Time Shift, Modification
- The Labelled Transition System
 - Configurations
 - Delay transitions
- └ Action transitions
- Transition Sequences, Reachability
- Computation Paths
- Timelocks and Zeno behaviour
- L₀ Runs

-11 - 2017-12-07 - Scontent

- 11 - 2017-12-07 -

3/34

(Pure) Timed Automata Syntax

Channel Names and Actions

To define timed automata formally, we need the following sets of symbols:

- A set $(a, b \in)$ Chan of channel names or channels.
- For each channel a ∈ Chan, two visible actions:
 a? and a! denote input and output on the channel (a?, a! ∉ Chan).
- $\tau \notin$ Chan represents an internal action, not visible from outside.
- $(\alpha, \beta \in) Act := \{a? \mid a \in Chan\} \cup \{a! \mid a \in Chan\} \cup \{\tau\}$ is the set of actions.
- An alphabet B is a set of channels, i.e. $B \subseteq$ Chan.
- For each alphabet B, we define the corresponding action set

$$B_{?!} := \{a? \mid a \in B\} \cup \{a! \mid a \in B\} \cup \{\tau\}.$$

• Note: $Chan_{?!} = Act$.

2017-12-07 -

5/34

Example: Desktop Lamp

- $B = \{press\}$ alphabet of the desktop lamp model
- channel 'press' models the single button of the desktop lamp
- Output: press! ("send a message onto channel press")

models "the button is pressed"

- Input: *press*? ("receive a message from channel *press*")
 - models "button pressed is recognised"
- Actions:

$$\{press!, press?, \tau\} = B_{!?}$$

Simple Clock Constraints

- Let $(x, y \in) X$ be a set of clock variables (or clocks).
- The set $(\varphi \in) \Phi(X)$ of (simple) clock constraints (over X) is defined by the following grammar:

```
\varphi ::= x \sim c \mid x - y \sim c \mid \varphi_1 \land \varphi_2
```

where

- $x, y \in X$,
- $c\in \mathbb{Q}_0^+$, and
- $\sim \in \{<,>,\leq,\geq\}.$
- Clock constraints of the form $x y \sim c$ are called difference constraints.

```
Examples: Let X = \{x, y\}.
```

- $x \le 3, x > 3$ (strictly speaking not a clock constraint: $3 \ge x$)
- y < 2, y > 3

-	7		
. 1	٢.	10	Λ
1	1	Э	4

x ≤ 3 ∕

Timed Automaton

11 - 2017-12-07 -

Definition 4.3. [*Timed automaton*] A (pure) timed automaton \mathcal{A} is a structure $\mathcal{A} = (L, B, X, I, E, \ell_{ini})$ where • $(\ell \in) L$ is a finite set of locations (or control states), • $B \subseteq$ Chan is an alphabet, • X is a finite set of clocks, • $I : L \rightarrow \Phi(X)$ assigns to each location a clock constraint, its invariant, • $E \subseteq L \times B_{?!} \times \Phi(X) \times 2^{X} \times L$ a finite set of directed edges. Edges $(\ell, \alpha, \varphi, Y, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a set Y of clocks that will be reset. • ℓ_{ini} is the initial location.

 $\begin{aligned} \mathcal{A} &= (L,B,X,I,E,\ell_{ini}) \\ \bullet \ I: L \to \Phi(X), \\ \bullet \ E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L \end{aligned}$

- Locations: $L = \{off, light, bright\}$
- Alphabet: $B = \{press\}$,
- **Clocks**: $X = \{x\}$,

2017-12-07 -

- Invariants: $I = \{ off \mapsto true, light \mapsto true, bright \mapsto true \}$
- Edges: $E = \{$ (off, press?, true, $\{x\}$, light), (light, press?, $x > 3, \emptyset, \text{off}$), (light, press?, $x \le 3, \emptyset, \text{bright}$), (bright, press?, true, \emptyset, off) $\}$
- Initial Location: $\ell_{ini} = off$

9/34

Graphical Representation of Timed Automata

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

• $I : L \to \Phi(X)$
• $E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L$

• Locations (control states) ℓ and their invariants $I(\ell)$:

- 11 - 2017-12-07 - Stasyr

2017-12-07 -

- Locations: L = {off, light, bright}
 Alphabet: B = {press},
- **Clocks**: $X = \{x\}$,
- Invariants: $I = \{ off \mapsto true, light \mapsto true, bright \mapsto true \}$
- Edges:
 $$\begin{split} \textbf{E} &= \{ \hspace{0.1cm} (\textit{off},\textit{press?},\textit{true},\{x\},\textit{light}),(\textit{light},\textit{press?},x>3,\emptyset,\textit{off}),\\ &(\textit{light},\textit{press?},x\leq3,\emptyset,\textit{bright}),(\textit{bright},\textit{press?},\textit{true},\emptyset,\textit{off}) \} \end{split}$$
- Initial Location: $\ell_{ini} = off$

11/34

• Locations: $L = \{ off, light, bright \}$ • Alphabet: $B = \{ press \}$, • Clocks: $X = \{x\}$, • Invariants: $I = \{ off \mapsto true, light \mapsto true, bright \mapsto true \}$ • Edges: $E = \{ (off, press?, true, \{x\}, light), (light, press?, x > 3, \emptyset, off), (light, press?, x \le 3, \emptyset, bright), (bright, press?, true, \emptyset, off) \}$

• Initial Location: $\ell_{ini} = off$

11/34

Example

- 11 - 2017-12-07 - Stasy

2017-12-07 -

- Locations: $L = \{off, light, bright\}$
- Alphabet: $B = \{press\},\$
- **Clocks**: $X = \{x\}$,
- Invariants: $I = \{ off \mapsto true, light \mapsto true, bright \mapsto true \}$
- Edges: $E = \{ (off, press?, true, \{x\}, light), (light, press?, x > 3, \emptyset, off), (light, press?, x \le 3, \emptyset, bright), (bright, press?, true, \emptyset, off) \}$
- Initial Location: $\ell_{ini} = off$

11/34

Locations: L = {off, light, bright}
Alphabet: B = {press},
Clocks: X = {x},
Invariants: I = {off → true, light → true, bright → true}
Edges: E = { (off, press?, true, {x}, light), (light, press?, x > 3, Ø, off),

- $(light, press?, x \le 3, \emptyset, bright), (bright, press?, true, \emptyset, off)$
- Initial Location: $\ell_{ini} = off$

11/34

Example

- 11 - 2017-12-07 - Stasy

2017-12-07 - Stasyn

- Locations: L = {off, light, bright}
 Alphabet: B = {press},
- **Clocks**: $X = \{x\}$,
- Invariants: $I = \{ off \mapsto true, light \mapsto true, bright \mapsto true \}$
- Edges: $E = \{ (off, press?, true, \{x\}, light), (light, press?, x > 3, \emptyset, off), (light, press?, x \le 3, \emptyset, bright), (bright, press?, true, \emptyset, off) \}$
- Initial Location: $\ell_{ini} = off$

11/34

Content

- 11 - 2017-12-07 - Scor

2017-12-07 -

- Timed Automata Syntax
- -(• Channels, Actions, Clock Constraints
- • Pure Timed Automaton
- Graphical Representation of TA

Timed Automata (Operational) Semantics

- Clock Valuations, Time Shift, Modification

- The Labelled Transition System

- Configurations
- Delay transitions
- Action transitions
- Transition Sequences, Reachability
- Computation Paths
- Timelocks and Zeno behaviour
- L₀ Runs

13/34

Clock Valuations

- 2017-12-07 - Stasen

• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

 $\nu:X\to \mathsf{Time}$

assigning each clock $x \in X$ the current time $\nu(x)$.

• Let φ be a clock constraint. The satisfaction relation between clock valuations ν and clock constraints φ , denoted by $\nu \models \varphi$, is defined inductively:

• $\nu \models x \sim c$ iff $\nu(\mathbf{x}) \stackrel{\sim}{\sim} \hat{c}$ • $\nu \models x - y \sim c$ iff $\nu(\mathbf{x}) \stackrel{\sim}{\sim} \nu(\mathbf{y}) \stackrel{\sim}{\sim} \hat{c}$ • $\nu \models \varphi_1 \land \varphi_2$ iff $\nu \models \varphi_1$ and $\nu \models \varphi_2$

14/34

• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

 $\nu: X \to \mathsf{Time}$

assigning each clock $x \in X$ the current time $\nu(x)$.

• Let φ be a clock constraint. The satisfaction relation between clock valuations ν and clock constraints φ , denoted by $\nu \models \varphi$, is defined inductively:

• $\nu \models x \sim c$ iff $\nu(x) \sim c$ • $\nu \models x - y \sim c$ iff $\nu(x) - \nu(y) \sim c$ • $\nu \models \varphi_1 \land \varphi_2$ iff $\nu \models \varphi_1$ and $\nu \models \varphi_2$

• Two clock constraints φ_1 and φ_2 are called (logically) equivalent if and only if for all clock valuations ν , we have

 $\nu \models \varphi_1$ if and only if $\nu \models \varphi_2$.

In that case we write $\models \varphi_1 \iff \varphi_2$.

14/34

Operations on Clock Valuations

Let ν be a valuation of clocks in X and $t \in$ Time.

Time Shift

2017-12-07 -

We write $\nu + t$ to denote the clock valuation (for X) with

$$(\underbrace{\nu+t})(x) = \nu(x) + t.$$

$$\underbrace{\nu: \xi_{\times} \mapsto 3.6\zeta}_{(\nu_{+} 0.27)(\times)} = \underbrace{\nu(x) + 0.27}_{= 3.0 + 0.27} = 3.22$$

for all $x \in X$,

• Modification / Update

Let $Y \subseteq X$ be a set of clocks. We write_t $\nu[Y := t]$ to denote the clock valuation with

$$(\nu[Y:=t])(x) = \begin{cases} t & \text{, if } x \in Y \\ \nu(x) & \text{, otherwise} \end{cases}$$

Special case reset: t = 0.

- 2017-12-07 -

Definition 4.4. The operational semantics of a timed automaton $\mathcal{A} = (L, B, X, I, E, \ell_{ini})$ is defined by the (labelled) transition system $\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \text{Time} \cup B_{?!}, \{\stackrel{\lambda}{\rightarrow} | \lambda \in \text{Time} \cup B_{?!}\}, C_{ini})$ where • $Conf(\mathcal{A}) = \{\langle \ell, \nu \rangle | \ell \in L, \nu : X \to \text{Time}, \nu \models I(\ell)\}$ • Time $\cup B_{?!}$ are the transition labels. • there are delay transition relations $\langle \ell, \nu \rangle \stackrel{\lambda}{\rightarrow} \langle \ell', \nu' \rangle, \quad \lambda \in \text{Time} \quad (\to \text{ in a minute})$ and action transition relations $\langle \ell, \nu \rangle \stackrel{\lambda}{\rightarrow} \langle \ell', \nu' \rangle, \quad \lambda \in B_{?!}. \quad (\to \text{ in a minute})$ • $C_{ini} = \{\langle \ell_{ini}, \nu_0 \rangle\} \cap Conf(\mathcal{A})$ with $\nu_0(x) = 0$ for all $x \in X$ is the set of initial configurations.

16/34

Operational Semantics of TA Cont'd

 $\mathcal{A} = (L, B, X, I, E, \ell_{ini})$ $\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{\stackrel{\lambda}{\rightarrow} \mid \lambda \in \mathsf{Time} \cup B_{?!}\}, C_{ini})$

• Time or delay transition:

2017-12-07 -

 $\left(\langle \ell, \nu \rangle, \langle \ell, \nu + \ell \rangle \right) \in \xrightarrow{\ell}$ $\left\langle \ell, \nu \right\rangle \xrightarrow{t} \left\langle \ell, \nu + t \right\rangle$

 $\text{ if and only if } \forall \, t' \in [0,t] : \underbrace{\nu+t'}_{} \models I(\ell).$

"Some time $t \in \text{Time}$ elapses respecting invariants, location unchanged."

• Action or discrete transition: $\begin{array}{c}
\langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle \\
\downarrow \\
\text{if and only if there is } (\ell, \alpha, \varphi, Y, \ell') \in E \text{ such that} \\
\nu \models \varphi, \quad \nu' = \nu[Y := 0], \quad \text{and } \nu' \models I(\ell').
\end{array}$

"An action occurs, location may change, some clocks may be reset, time does not elapse."

• Configurations:

 $Conf(\mathcal{A}) = \{ \langle \textit{off}, \nu \rangle, \langle \textit{light}, \nu \rangle, \langle \textit{light}, \nu \rangle \mid \nu : X \rightarrow \mathsf{Time} \}$

• Initial Configurations:

$$\{\langle \mathbf{off}, \nu_0 \rangle\} \cap Conf(\mathcal{A}) = \{\langle \mathsf{off}, \forall x \mapsto 0 \rangle \}$$

• Delay Transition:

$$\langle \text{off}, \{x \mapsto 0\} \rangle \xrightarrow{27} \langle \text{off}, \{x \mapsto 27\} \rangle$$

• Action Transition:

-11 - 2017-12-07 - Stase

$$\langle \mathsf{off}, \{x \mapsto 27\} \rangle \xrightarrow{press?} \langle \mathsf{light}, \{x \mapsto 0\} \rangle \checkmark$$

18/34

Transition Sequences

• A transition sequence of \mathcal{A} is any finite or infinite sequence of the form

$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots$$

with

- 11 - 2017-12-07 - Stasen

•
$$\langle \ell_0, \nu_0 \rangle \in C_{ini}$$
,

• for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $\mathcal{T}(\mathcal{A})$ with $\langle \ell_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \ell_{i+1}, \nu_{i+1} \rangle$

20/34

Reachability

 A configuration (*l*, *ν*) is called reachable (in *A*) if and only if there is a transition sequence of the form

$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$

A location *l* is called reachable if and only if any configuration (*l*, *ν*) is reachable, i.e. there exists a valuation *ν* such that (*l*, *ν*) is reachable.

Location Invariants

Recall:
$$Conf(\mathcal{A}) = \{ \langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \text{Time}, \nu \models I(\ell) \}$$

Example:

2017-12-07 -

- 11 - 2017-12-07 - Stasen

$$\begin{array}{c} & \overbrace{\ell_{0} \quad press!} & \overbrace{\ell_{1} \quad press!} & \overbrace{\ell_{2} \quad press!} \\ & y < 2 \end{array} \xrightarrow{(1)} & y := 0 \end{array} \xrightarrow{(1)} & \overbrace{\ell_{2} \quad press!} & \overbrace{\ell_{2} \quad press!} \\ & \overbrace{\ell_{2} \quad r_{2} \quad$$

- $\langle \ell_1, y \mapsto 27 \rangle$ is not a configuration,
- $\langle \ell_0, y \mapsto 0 \rangle \xrightarrow{0.707} \langle \ell_0, y \mapsto 0.707 \rangle \xrightarrow{press!} \langle \ell_1, y \mapsto 0.707 \rangle$ is a transition sequence
- $\langle \ell_0, y \mapsto 0 \rangle \xrightarrow{27} \langle \ell_0, y \mapsto 27 \rangle$ is a transition sequence

•
$$\langle \ell_0, y \mapsto 0 \rangle \xrightarrow{27} \langle \ell_0, y \mapsto 27 \rangle \xrightarrow{press!} \langle \ell_1, y \mapsto 27 \rangle$$
 is not a transition sequence

22/34

Two Approaches to Exclude "Bad" Configurations

- The approach taken for TA:
 - Rule out bad configurations in the step from A to T(A).
 "Bad" configurations are not even configurations!
 - Recall Definition 4.4:
 - $Conf(\mathcal{A}) = \{ \langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \}$
 - $C_{ini} = \{ \langle \ell_{ini}, \nu_0 \rangle \} \cap Conf(\mathcal{A})$

• The approach not taken for TA:

• consider every $\langle \ell, \nu \rangle$ to be a configuration, i.e. have

• "bad" configurations not in transition relation with others, i.e. have, e.g.,

$$\langle \ell, \nu \rangle \xrightarrow{t} \langle \ell, \nu + t \rangle$$

if and only if $\forall t' \in [0, t] : \nu + t' \models I(\ell)$ and $\nu + t' \models I(\ell')$.

Content

- Timed Automata Syntax
- • Channels, Actions, Clock Constraints
- • Pure Timed Automaton
- Graphical Representation of TA
- Timed Automata (Operational) Semantics
- Clock Valuations, Time Shift, Modification
- The Labelled Transition System
 - Configurations
- Delay transitions
- └-● Action transitions
- Transition Sequences, Reachability,
- Computation Paths
- Timelocks and Zeno behaviour
- L₀ Runs

-11 - 2017-12-07 - Scontent

11 - 2017-12-07 -

24/34

Computation Path, Run

- $\langle \ell, \nu \rangle, t$ is called time-stamped configuration
- Time-stamped delay transition:

$$\langle \ell, \nu \rangle, t \xrightarrow{t'} \langle \ell, \nu + t' \rangle, t + t' \quad \text{iff } t' \in \text{Time and } \langle \ell, \nu \rangle \xrightarrow{t'} \langle \ell, \nu + t' \rangle.$$

• Time-stamped action transition:

$$\langle \ell, \nu \rangle, t \xrightarrow{\alpha} \langle \ell', \nu' \rangle, t \quad \text{iff } \alpha \in B_{?!} \text{ and } \langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$$

26/34

Computation Paths

• A sequence of time-stamped configurations

$$\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

is called

11 - 2017-12-07 - 1

• computation path (or path) of A

• starting in $\langle \ell_0, \nu_0 \rangle, t_0$

if and only if it is <u>either infinite or maximally finite</u> (wrt. the time stamped transition relations).

- A computation path (or path) of \mathcal{A} is a computation path
 - starting in $\langle \ell_0, \nu_0 \rangle, 0$
 - with $\langle \ell_0, \nu_0 \rangle \in C_{ini}$.

Timelocks and Zeno Behaviour

a?

- Configuration $\langle \ell, \nu \rangle$ is called **timelock** iff no delay transitions with t > 0 from $\langle \ell, \nu \rangle$ Examples:

 - $\langle \ell, x = 0 \rangle, 0 \xrightarrow{2} \langle \ell, x = 2 \rangle, 2$ $\langle \ell', x = 0 \rangle, 0 \xrightarrow{3} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \dots$

• Zeno behaviour:

2017-12-07 -

- $\langle \ell, x = 0 \rangle, 0 \xrightarrow{\frac{1}{2}} \langle \ell, x = \frac{1}{2} \rangle, \frac{1}{2} \xrightarrow{\frac{1}{4}} \langle \ell, x = \frac{3}{4} \rangle, \frac{3}{4} \dots \xrightarrow{\frac{1}{2^n}} \langle \ell, x = \frac{2^n 1}{2^n} \rangle, \frac{2^n 1}{2^n} \dots$
- $\langle \ell, x = 0 \rangle, 0 \xrightarrow{0.1} \langle \ell, x = 0.1 \rangle, 0.1 \xrightarrow{0.01} \langle \ell, x = 0.11 \rangle, 0.11 \xrightarrow{0.001} \langle \ell, x = 0.111 \rangle, 0.111 \dots$

28/34

Real-Time Sequence

Definition 4.9. An infinite sequence t_0, t_1, t_2, \ldots of values $t_i \in \text{Time for } i \in \mathbb{N}_0$ is called real-time sequence if and only if it has the following properties: Monotonicity: $\forall i \in \mathbb{N}_0 : t_i \le t_{i+1}$ • Non-Zeno behaviour (or unboundedness (or progress)): $\forall t \in \mathsf{Time} \, \exists \, i \in \mathbb{N}_0 : t < t_i$

Run

Definition 4.10. A run of \mathcal{A} starting in $\langle \ell_0, \nu_0 \rangle, t_0$ is an infinite computation path $\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$ of \mathcal{A} where $(t_i)_{i \in \mathbb{N}_0}$ is a real-time sequence. We call ξ a run of \mathcal{A} if and only if ξ is a computation path of \mathcal{A} .

Example:

2017-12-07 -

30/34

Content

- 11 - 2017-12-07 -

- Timed Automata Syntax
- -(• Channels, Actions, Clock Constraints
- • Pure Timed Automaton
- Graphical Representation of TA

• Timed Automata (Operational) Semantics

- Clock Valuations, Time Shift, Modification

- The Labelled Transition System

- Configurations
- -• Delay transitions
- └ Action transitions
- Transition Sequences, Reachability
- Computation Paths
- Timelocks and Zeno behaviour
- └.● Runs

- A timed automaton is basically a finite automaton with
 - actions,
 - guards, invariants, and resets of clocks
- The (operational) semantics of TA is a labelled transition system with
 - delay transitions (where locations do not change), and
 - action transitions (where time does not elapse)
- We distinguish
 - Transition Sequences: without timestamps
 - Computation Paths: with timestamps,
 - Runs: timestamps form a real-time sequence.
- The reachability problem is an important decision problem for timed automata.

32/34

References

2017-12-07 -

References

Olderog, E.-R. and Dierks, H. (2008). <u>Real-Time Systems - Formal Specification and Automatic Verification</u>. Cambridge University Press.

-11-2017-12-07 - main -

34/34