Real-Time Systems

Lecture 11: Timed Automata

2017-12-07
Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

Introduction

- Observables and Evolutions
- Duration Calculus (DC)
- Semantical Correctness Proofs
- DC Decidability
- DC Implementables
- PLC-Automata

$$
o b s: \text { Time } \rightarrow \mathscr{D}(o b s)
$$

- Networks of Timed Automata
- Region/Zone-Abstraction
- TA model-checking
- Extended Timed Automata
- Undecidability Results

$$
\left\langle o b s_{0}, \nu_{0}\right\rangle, t_{0} \xrightarrow{\lambda_{0}}\left\langle o b s_{1}, \nu_{1}\right\rangle, t_{1} \ldots
$$

\qquad
Automatic Verification.
...whether a TA satisfies a DC formula, observer-based

- Recent Results:
- Timed Sequence Diagrams, or Quasi-equal Clocks, or Automatic Code Generation, or .

\author{

- Timed Automata Syntax
 -Channels, Actions, Clock Constraints
 Pure Timed Automaton
 - Graphical Representation of TA
}
- Timed Automata (Operational) Semantics
- Clock Valuations, Time Shift, Modification

The Labelled Transition System
Configurations
Delay transitions
Action transitions
Transition Sequences, Reachability
Computation Paths
Timelocks and Zeno behaviour
Runs

To define timed automata formally, we need the following sets of symbols:

- A set $(a, b \in)$ Chan of channel names or channels.
- For each channel $a \in$ Chan, two visible actions:
a ? and $a!$ denote input and output on the channel (a ?, $a!\notin$ Chan).
- $\tau \notin$ Chan represents an internal action, not visible from outside.
- $(\alpha, \beta \in)$ Act $:=\{a ? \mid a \in \operatorname{Chan}\} \cup\{a!\mid a \in \operatorname{Chan}\} \cup\{\tau\}$ is the set of actions.
- An alphabet B is a set of channels, i.e. $B \subseteq$ Chan.
- For each alphabet B, we define the corresponding action set

$$
B_{?!}:=\{a ? \mid a \in B\} \cup\{a!\mid a \in B\} \cup\{\tau\} .
$$

- Note: Chan $_{\text {? }}=$ Act.

Example: Desktop Lamp

- $B=\{$ press $\}$ - alphabet of the desktop lamp model
- channel 'press' models the single button of the desktop lamp
- Output: press! ("send a message onto channel press")
- models "the button is pressed"
- Input: press? ("receive a message from channel press")
- models "button pressed is recognised"
- Actions:

$$
\{\text { press }!, \text { press?, } \tau\}=B_{!?}
$$

- Let $(x, y \in) X$ be a set of clock variables (or clocks).
- The set $(\varphi \in) \Phi(X)$ of (simple) clock constraints (over X) is defined by the following grammar:

$$
\varphi::=x \sim c|x-y \sim c| \varphi_{1} \wedge \varphi_{2}
$$

where

- $x, y \in X$,
- $c \in \mathbb{Q}_{0}^{+}$, and
- $\sim \in\{<,>, \leq, \geq\}$.
- Clock constraints of the form $x-y \sim c$ are called difference constraints.

Examples: Let $X=\{x, y\}$.

- $x \leq 3, x>3$ (strictly speaking not a clock constraint: $3 \geq x$)
- $y<2, y>3$

Timed Automaton

Definition 4.3. [Timed automaton]
A (pure) timed automaton \mathcal{A} is a structure

$$
\mathcal{A}=\left(L, B, X, I, E, \ell_{i n i}\right)
$$

where

- ($\ell \in) L$ is a finite set of locations (or control states),
- $B \subseteq$ Chan is an alphabet,
- X is a finite set of clocks,
- $I: L \rightarrow \Phi(X)$ assigns to each location a clock constraint, its invariant, powerset
- $E \subseteq L \times B_{\text {?! }} \times \Phi(X) \times 2^{X} \times L$ a finite set of directed edges.

Edges ' $\left.\ell, \alpha, \dot{\varphi}, \varphi^{\prime}, \ell^{\prime}\right)$ from location ℓ to ℓ^{\prime} are labelled with an action α, a guard φ, and a set Y of clocks that will be reset.

- $\ell_{i n i}$ is the initial location.

Example

$$
\mathcal{A}=\left(L, B, X, I, E, \ell_{i n i}\right)
$$

- $I: L \rightarrow \Phi(X)$,
- $E \subseteq L \times B_{\text {?! }} \times \Phi(X) \times 2^{X} \times L$
- Locations: $L=\{$ off, light, bright $\}$
- Alphabet: $B=\{$ press $\}$,
- Clocks: $X=\{x\}$,
- Invariants: $I=\{$ off \mapsto true, light \mapsto true, bright \mapsto true $\}$
- Edges: $E=\{\quad$ (off, press?, true, $\{x\}$, light), (light, press?, $x>3, \emptyset$, off), (light, press?, $x \leq 3, \emptyset$, bright), (bright, press?, true, \emptyset, off $)\}$
- Initial Location: $\ell_{i n i}=$ off

Graphical Representation of Timed Automata

$$
\text { - } I: L \rightarrow \Phi(X)
$$

$$
\begin{aligned}
\mathcal{A}= & \left(L, B, X, I, E, \ell_{\text {ini }}\right) \\
& \cdot E \subseteq L \times B_{?!} \times \Phi(X) \times 2^{X} \times L
\end{aligned}
$$

- Locations (control states) ℓ and their invariants $I(\ell)$:

- Initial location $\ell_{i n i}$:

τ if not
- Edges: $\left(\ell, \alpha, \varphi, Y, \ell^{\prime}\right) \in L \times B_{?!} \times \Phi(X) \times 2^{X} \times L$

\emptyset if not explicitly given; $x:=0$ denotes $\{x\}$

```
- Locations: \(L=\{\) off, light, bright \(\}\)
- Alphabet: \(B=\{\) press \(\}\),
- Clocks: \(X=\{x\}\),
- Invariants: \(I=\) \{off \(\mapsto\) true, light \(\mapsto\) true, bright \(\mapsto\) true \(\}\)
- Edges: \(E=\{\) (off, press?, true, \(\{x\}\), light), (light, press?, \(x>3, \emptyset\), off),
        (light, press?, \(x \leq 3, \emptyset\), bright), (bright, press?, true, \(\emptyset\), off) \}
- Initial Location: \(\ell_{\text {ini }}=\) off
```


off

light

11/34

Example

- Locations: $L=\{$ off, light, bright $\}$
- Alphabet: $B=\{$ press $\}$,
- Clocks: $X=\{x\}$,
- Invariants: $I=$ \{off \mapsto true, light \mapsto true, bright \mapsto true $\}$
- Edges: $E=\{$ (off, press?, true, $\{x\}$, light), (light, press?, $x>3$, \emptyset, off),
(light, press?, $x \leq 3, \emptyset$, bright), (bright, press?, true, \emptyset, off $)\}$
- Initial Location: $\ell_{\text {ini }}=$ off


```
- Locations: \(L=\{\) off, light, bright \(\}\)
- Alphabet: \(B=\{\) press \(\}\),
- Clocks: \(X=\{x\}\),
- Invariants: \(I=\) \{off \(\mapsto\) true, light \(\mapsto\) true, bright \(\mapsto\) true \(\}\)
- Edges: \(E=\{\) (off, press?, true, \(\{x\}\), light), (light, press?, \(x>3, \emptyset\), off),
    (light, press?, \(x \leq 3, \emptyset\), bright), (bright, press?, true, \(\emptyset\), off) \}
- Initial Location: \(\ell_{i n i}=\) off
```


$11 / 34$

Example

```
- Locations: \(L=\{\) off, light, bright \(\}\)
- Alphabet: \(B=\{\) press \(\}\),
- Clocks: \(X=\{x\}\),
- Invariants: \(I=\) \{off \(\mapsto\) true, light \(\mapsto\) true, bright \(\mapsto\) true \(\}\)
- Edges: \(E=\{\) (off, press?, true, \(\{x\}\), light), (light, press?, \(x>3, \emptyset\), off),
(light, press?, \(x \leq 3, \emptyset\), bright), (bright, press?, true, \(\emptyset\), off) \}
- Initial Location: \(\ell_{i n i}=\) off
```



```
Example - Locations: \(L=\{\) off, light, bright \(\}\)
- Alphabet: \(B=\{\) press \(\}\),
- Clocks: \(X=\{x\}\),
- Invariants: \(I=\{\) off \(\mapsto\) true, light \(\mapsto\) true, bright \(\mapsto\) true \(\}\)
- Edges: \(E=\{\) (off, press?, true, \(\{x\}\), light), (light, press?, \(x>3, \emptyset\), off),
    (light, press?, \(x \leq 3, \emptyset\), bright), (bright, press?, true, \(\emptyset\), off) \(\}\)
- Initial Location: \(\ell_{\text {ini }}=\) off
```


Example

- Locations: $L=$ \{off, light, bright $\}$
- Alphabet: $B=\{$ press $\}$,
- Clocks: $X=\{x\}$,
- Invariants: $I=\{$ off \mapsto true, light \mapsto true, bright \mapsto true $\}$
- Edges: $E=\{$ (off, press?, true, $\{x\}$, light), (light, press?, $x>3, \emptyset$, off), (light, press?, $x \leq 3, \emptyset$, bright), (bright, press?, true, \emptyset, off) $\}$
- Initial Location: $\ell_{i n i}=$ off

Pure TA Operational Semantics

Clock Valuations

- Let X be a set of clocks. A valuation ν of clocks in X is a mapping

$$
\nu: X \rightarrow \text { Time }
$$

assigning each clock $x \in X$ the current time $\nu(x)$.

- Let φ be a clock constraint. The satisfaction relation between clock valuations ν and clock constraints φ, denoted by $\nu \models \varphi$, is defined inductively:
- $\nu \models x \sim c \quad$ iff $\nu(x) \hat{\sim} \hat{c}$
- $\nu \vDash x-y \sim c \quad$ iff $\quad \nu(x) \wedge \nu(y) \hat{\imath}$
- $\nu \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\quad \nu \vDash \varphi_{1}$ and $\nu \vDash \varphi_{2}$
- Let X be a set of clocks. A valuation ν of clocks in X is a mapping

$$
\nu: X \rightarrow \text { Time }
$$

assigning each clock $x \in X$ the current time $\nu(x)$.

- Let φ be a clock constraint. The satisfaction relation between clock valuations ν and clock constraints φ, denoted by $\nu \models \varphi$, is defined inductively:
- $\nu \models x \sim c \quad$ iff $\quad \nu(x) \sim c$
- $\nu \models x-y \sim c \quad$ iff $\quad \nu(x)-\nu(y) \sim c$
- $\nu \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\quad \nu \models \varphi_{1}$ and $\nu \models \varphi_{2}$
- Two clock constraints φ_{1} and φ_{2} are called (logically) equivalent if and only if for all clock valuations ν, we have

$$
\nu \models \varphi_{1} \text { if and only if } \nu \models \varphi_{2} \text {. }
$$

In that case we write $\models \varphi_{1} \Longleftrightarrow \varphi_{2}$.

Operations on Clock Valuations

Let ν be a valuation of clocks in X and $t \in$ Time.

- Time Shift

We write $\nu+t$ to denote the clock valuation (for X) with

$$
(\underbrace{\nu+t})(x)=\nu(x)+t .
$$

$$
\nu:\{x \mapsto 3.0\}
$$

for all $x \in X$,

$$
\begin{aligned}
(\nu+0.27)(x) & =\nu(x)+0.27 \\
& =3.0+0.27=3.27
\end{aligned}
$$

- Modification / Update

Let $Y \subseteq X$ be a set of clocks.
We write $\nu[Y:=t]$ to denote the clock valuation with

$$
(\nu[Y:=t])(x)= \begin{cases}t & , \text { if } x \in Y \\ \nu(x) & , \text { otherwise }\end{cases}
$$

Special case reset: $t=0$.

Definition 4.4. The operational semantics of a timed automaton

 $\mathcal{A}=\left(L, B, X, I, E, \ell_{\text {ini }}\right)$ is defined by the (labelled) transition system$$
\mathcal{T}(\mathcal{A})=\left(\operatorname{Conf}(\mathcal{A}), \text { Time } \cup B_{?!},\left\{\xrightarrow{\lambda} \mid \lambda \in \text { Time } \cup B_{?!}\right\}, C_{i n i}\right)
$$

where

- $\operatorname{Conf}(\mathcal{A})=\{\langle\ell, \nu\rangle \mid \ell \in L, \nu: X \rightarrow$ Time, $\nu \models I(\ell)\}$
- Time $\cup B_{\text {?! }}$ are the transition labels,
- there are delay transition relations

$$
\langle\ell, \nu\rangle \xrightarrow{\lambda}\left\langle\ell^{\prime}, \nu^{\prime}\right\rangle, \quad \lambda \in \text { Time } \quad(\rightarrow \text { in a minute })
$$

and action transition relations

$$
\langle\ell, \nu\rangle \xrightarrow{\lambda}\left\langle\ell^{\prime}, \nu^{\prime}\right\rangle, \quad \lambda \in B_{?!} . \quad(\rightarrow \text { in a minute })
$$

- $C_{\text {ini }}=\left\{\left\langle\ell_{\text {ini }}, \nu_{0}\right\rangle\right\} \cap \operatorname{Conf}(\mathcal{A})$ with $\nu_{0}(x)=0$ for all $x \in X$ is the set of initial configurations.

Operational Semantics of TA Cont'd

$$
\begin{gathered}
\mathcal{A}=\left(L, B, X, I, E, \ell_{\text {ini }}\right) \\
\mathcal{T}(\mathcal{A})=\left(\operatorname{Conf}(\mathcal{A}), \operatorname{Time} \cup B_{?!},\left\{\xrightarrow{\lambda} \mid \lambda \in \operatorname{Time} \cup B_{\text {?! }}\right\}, C_{\text {ini }}\right)
\end{gathered}
$$

- Time or delay transition:

$$
\begin{aligned}
& (\langle\ell, v\rangle,\langle e, v+t\rangle) \in \stackrel{t}{\longrightarrow} \\
& \langle\ell, \nu\rangle \xrightarrow{t}\langle\ell, \nu+t\rangle
\end{aligned}
$$

if and only if $\forall t^{\prime} \in[0, t]: \underbrace{\nu+t^{\prime}} \models I(\ell)$.
"Some time $t \in$ Time elapses respecting invariants, location unchanged."

- Action or discrete transition: $\underset{\langle\ell, \nu\rangle}{\substack{\top}} \stackrel{\alpha}{\rightarrow}\left\langle\ell^{\prime}, \nu^{\prime}\right\rangle$,
if and only if there is $\left(\ell^{\prime}, \alpha^{\prime}, \bar{\varphi}, Y, \ell^{\prime}\right) \bar{\in} \bar{E} \overline{\text { such }}$ that

$$
\nu \models \dot{\varphi}, \quad \nu^{\prime}=\nu[Y:=0], \quad \text { and } \nu^{\prime} \models I\left(\ell^{\prime}\right)
$$

"An action occurs, location may change, some clocks may be reset, time does not elapse."

Example

- Configurations:

$$
\operatorname{Conf}(\mathcal{A})=\{\langle\text { off }, \nu\rangle,\langle\text { light }, \nu\rangle,\langle\text { light }, \nu\rangle \mid \nu: X \rightarrow \text { Time }\}
$$

- Initial Configurations:

$$
\begin{aligned}
\left\{\left\langle\text { off }, \nu_{0}\right\rangle\right\} \cap \operatorname{Conf}(\mathcal{A})= & \{\langle\text { off, }\{x \mapsto 0\}\rangle\} \\
& \{<\text { off, } x=0\rangle\}
\end{aligned}
$$

- Delay Transition:

$$
\langle\text { off },\{x \mapsto 0\}\rangle \xrightarrow{27}\langle\text { off, }\{x \mapsto 27\}\rangle
$$

- Action Transition:

$$
\langle\text { off, }\{x \mapsto 27\}\rangle \xrightarrow{\text { press? }}\langle\text { light, }\{x \mapsto 0\}\rangle
$$

Transition Sequences

- A transition sequence of \mathcal{A} is any finite or infinite sequence of the form

$$
\left\langle\ell_{0}, \nu_{0}\right\rangle \xrightarrow{\lambda_{1}}\left\langle\ell_{1}, \nu_{1}\right\rangle \xrightarrow{\lambda_{2}}\left\langle\ell_{2}, \nu_{2}\right\rangle \xrightarrow{\lambda_{3}} \ldots
$$

with

- $\left\langle\ell_{0}, \nu_{0}\right\rangle \in C_{i n i}$,
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $\mathcal{T}(\mathcal{A})$ with $\left\langle\ell_{i}, \nu_{i}\right\rangle \xrightarrow{\lambda_{i+1}}\left\langle\ell_{i+1}, \nu_{i+1}\right\rangle$

$$
\langle\text { off }, x=0\rangle \xrightarrow{2.5}\langle\text { off, } x=2.5\rangle
$$

$$
\xrightarrow{1.7}\langle\text { off, } x=4.2\rangle
$$

$$
\xrightarrow{\text { press? }}\langle\text { light }, x=0\rangle
$$

$$
\xrightarrow{2.1}\langle\text { light }, x=2.1\rangle
$$

$$
\xrightarrow{\text { press? }}\langle\text { bright, } x=2.1\rangle
$$

$$
\xrightarrow{10}\langle\text { bright, } x=12.1\rangle
$$

$$
\xrightarrow{\text { press? }}\langle\text { off, } x=12.1\rangle
$$

$$
\xrightarrow{\text { press? }}\langle\text { light, } x=0\rangle \xrightarrow{0}\langle\text { light }, x=0\rangle
$$

20/34

Reachability

- A configuration $\langle\ell, \nu\rangle$ is called reachable (in \mathcal{A}) if and only if there is a transition sequence of the form

$$
\left\langle\ell_{0}, \nu_{0}\right\rangle \xrightarrow{\lambda_{1}}\left\langle\ell_{1}, \nu_{1}\right\rangle \xrightarrow{\lambda_{2}}\left\langle\ell_{2}, \nu_{2}\right\rangle \xrightarrow{\lambda_{3}} \ldots \xrightarrow{\lambda_{n}}\left\langle\ell_{n}, \nu_{n}\right\rangle=\langle\ell, \nu\rangle
$$

- A location ℓ is called reachable if and only if any configuration $\langle\ell, \nu\rangle$ is reachable, i.e. there exists a valuation ν such that $\langle\ell, \nu\rangle$ is reachable.

$$
\text { Recall: } \quad \operatorname{Conf}(\mathcal{A})=\{\langle\ell, \nu\rangle \mid \ell \in L, \nu: X \rightarrow \text { Time, } \nu \models I(\ell)\}
$$

Example:

- Configurations:
- $\operatorname{Conf}(\mathcal{A})=\left\{\left\langle\ell_{0}, \nu\right\rangle,\left\langle\ell_{2}, \nu\right\rangle \mid \nu:\{y\} \rightarrow\right.$ Time $\} \cup\left\{\left\langle\ell_{1}, \nu\right\rangle \mid \nu:\{y\} \rightarrow[0,2[\}\right.$
- $\left\langle\ell_{1}, y \mapsto 1.01\right\rangle$ is a configuration,
- $\left\langle\ell_{1}, y \mapsto 27\right\rangle$ is not a configuration,
- $\left\langle\ell_{0}, y \mapsto 0\right\rangle \xrightarrow{0.707}\left\langle\ell_{0}, y \mapsto 0.707\right\rangle \xrightarrow{\text { press! }}\left\langle\ell_{1}, y \mapsto 0.707\right\rangle$ is a transition sequence
- $\left\langle\ell_{0}, y \mapsto 0\right\rangle \xrightarrow{27}\left\langle\ell_{0}, y \mapsto 27\right\rangle$ is a transition sequence
- $\left\langle\ell_{0}, y \mapsto 0\right\rangle \xrightarrow{27}\left\langle\ell_{0}, y \mapsto 27\right\rangle \xrightarrow{\text { press! }}\left\langle\ell_{1}, y \mapsto 27\right\rangle$ is not a transition sequence

Two Approaches to Exclude "Bad" Configurations

- The approach taken for TA:

- Rule out bad configurations in the step from \mathcal{A} to $\mathcal{T}(\mathcal{A})$.
"Bad" configurations are not even configurations!
- Recall Definition 4.4:
- $\operatorname{Conf}(\mathcal{A})=\{\langle\ell, \nu\rangle \mid \ell \in L, \nu: X \rightarrow$ Time,$\nu \models I(\ell)\}$
- $C_{\text {ini }}=\left\{\left\langle\ell_{\text {ini }}, \nu_{0}\right\rangle\right\} \cap \operatorname{Conf}(\mathcal{A})$
- The approach not taken for TA:
- consider every $\langle\ell, \nu\rangle$ to be a configuration, i.e. have

$$
\operatorname{Conf}(\mathcal{A})=\{\langle\ell, \nu\rangle \mid \ell \in L, \nu: X \rightarrow \text { Time } / H / N \nmid N / \mathbb{N} / I X\}
$$

- "bad" configurations not in transition relation with others, i.e. have, e.g.,

$$
\langle\ell, \nu\rangle \xrightarrow{t}\langle\ell, \nu+t\rangle
$$

if and only if $\forall t^{\prime} \in[0, t]: \nu+t^{\prime} \models I(\ell)$ and $\nu+t^{\prime} \models I\left(\ell^{\prime}\right)$.

\author{

- Timed Automata Syntax
 -Channels, Actions, Clock Constraints
 - Pure Timed Automaton
 - Graphical Representation of TA
}

\author{

- Timed Automata (Operational) Semantics
 - Clock Valuations, Time Shift, Modification
 The Labelled Transition System
 Configurations
 Delay transitions
 - Action transitions
 Transition Sequences, Reachability
 Computation Paths
 Timelocks and Zeno behaviour
 Runs
}

Computation Path, Run

Time Stamped Configurations

- $\langle\ell, \nu\rangle, t$ is called time-stamped configuration
- Time-stamped delay transition:

$$
\langle\ell, \nu\rangle, t \xrightarrow{t^{\prime}}\left\langle\ell, \nu+t^{\prime}\right\rangle, t+t^{\prime} \quad \text { iff } t^{\prime} \in \text { Time and }\langle\ell, \nu\rangle \xrightarrow{t^{\prime}}\left\langle\ell, \nu+t^{\prime}\right\rangle .
$$

- Time-stamped action transition:

$$
\langle\ell, \nu\rangle, t \xrightarrow{\alpha}\left\langle\ell^{\prime}, \nu^{\prime}\right\rangle, t \quad \text { iff } \alpha \in B_{?!} \text { and }\langle\ell, \nu\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \nu^{\prime}\right\rangle .
$$

- A sequence of time-stamped configurations

$$
\xi=\left\langle\ell_{0}, \nu_{0}\right\rangle, t_{0} \xrightarrow{\lambda_{1}}\left\langle\ell_{1}, \nu_{1}\right\rangle, t_{1} \xrightarrow{\lambda_{2}}\left\langle\ell_{2}, \nu_{2}\right\rangle, t_{2} \xrightarrow{\lambda_{3}} \ldots
$$

is called

- computation path (or path) of \mathcal{A}
- starting in $\left\langle\ell_{0}, \nu_{0}\right\rangle, t_{0}$
if and only if it is either infinite or maximally finite (wrt. the time stamped transition relations).
- A computation path (or path) of \mathcal{A} is a computation path
- starting in $\left\langle\ell_{0}, \nu_{0}\right\rangle, 0$
- with $\left\langle\ell_{0}, \nu_{0}\right\rangle \in C_{i n i}$.

- Configuration $\langle\ell, \nu\rangle$ is called timelock iff no delay transitions with $t>0$ from $\langle\ell, \nu\rangle$

Examples:

- $\langle\ell, x=0\rangle, 0 \xrightarrow{2}\langle\ell, x=2\rangle, 2$
- $\left\langle\ell^{\prime}, x=0\right\rangle, 0 \xrightarrow{3}\left\langle\ell^{\prime}, x=3\right\rangle, 3 \xrightarrow{a ?}\left\langle\ell^{\prime}, x=3\right\rangle, 3 \xrightarrow{a ?} \ldots$
- Zeno behaviour:
- $\langle\ell, x=0\rangle, 0 \xrightarrow{\frac{1}{2}}\left\langle\ell, x=\frac{1}{2}\right\rangle, \frac{1}{2} \xrightarrow{\frac{1}{4}}\left\langle\ell, x=\frac{3}{4}\right\rangle, \frac{3}{4} \ldots \xrightarrow{\frac{1}{2^{n}}}\left\langle\ell, x=\frac{2^{n}-1}{2^{n}}\right\rangle, \frac{2^{n}-1}{2^{n}} \ldots$
- $\langle\ell, x=0\rangle, 0 \xrightarrow{0.1}\langle\ell, x=0.1\rangle, 0.1 \xrightarrow{0.01}\langle\ell, x=0.11\rangle, 0.11 \xrightarrow{0.001}\langle\ell, x=0.111\rangle, 0.111 \ldots$

Real-Time Sequence

Definition 4.9. An infinite sequence

$$
t_{0}, t_{1}, t_{2}, \ldots
$$

of values $t_{i} \in$ Time for $i \in \mathbb{N}_{0}$ is called real-time sequence if and only if it has the following properties:

- Monotonicity:

$$
\forall i \in \mathbb{N}_{0}: t_{i} \leq t_{i+1}
$$

- Non-Zeno behaviour (or unboundedness (or progress)):

$$
\forall t \in \text { Time } \exists i \in \mathbb{N}_{0}: t<t_{i}
$$

Definition 4.10. A run of \mathcal{A} starting in $\left\langle\ell_{0}, \nu_{0}\right\rangle, t_{0}$ is an infinite computation path

$$
\xi=\left\langle\ell_{0}, \nu_{0}\right\rangle, t_{0} \xrightarrow{\lambda_{1}}\left\langle\ell_{1}, \nu_{1}\right\rangle, t_{1} \xrightarrow{\lambda_{2}}\left\langle\ell_{2}, \nu_{2}\right\rangle, t_{2} \xrightarrow{\lambda_{3}} \ldots
$$

of \mathcal{A} where $\left(t_{i}\right)_{i \in \mathbb{N}_{0}}$ is a real-time sequence.
We call ξ a run of \mathcal{A} if and only if ξ is a computation path of \mathcal{A}.

Example:


```
- Timed Automata Syntax
    - Channels, Actions, Clock Constraints
    (- Pure Timed Automaton
    -Graphical Representation of TA
- Timed Automata (Operational) Semantics
    (- Clock Valuations, Time Shift, Modification
    The Labelled Transition System
    - Configurations
    Delay transitions
    Action transitions
        Transition Sequences, Reachability
        Computation Paths
        Timelocks and Zeno behaviour
        Runs
```

- A timed automaton is basically a finite automaton with
- actions,
- guards, invariants, and resets of clocks
- The (operational) semantics of TA is a labelled transition system with
- delay transitions (where locations do not change), and
- action transitions (where time does not elapse)
- We distinguish
- Transition Sequences: without timestamps
- Computation Paths: with timestamps,
- Runs: timestamps form a real-time sequence.
- The reachability problem is an important decision problem for timed automata.

References

References

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

