Real-Time Systems

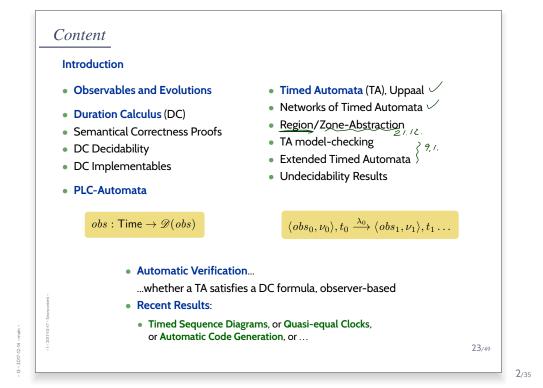
Lecture 13: Location Reachability

(or: The Region Automaton)

2017-12-14

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



Content

- The Location Reachability Problem
- ... is decidable for TA:
- Normalised Constants
- -• Time Abstract Transition System
- **Regions**:
- Equivalence Classes of Clock Valuations
- Le The Region Automaton
 - -• ... is finite
 - ${}$... and effectively constructable.
- The Constraint Reachability Problem
- └ ... is decidable as well.

-13 - 2017-12-14 - Sconten

- 13 - 2017-12-14 -

3/35

The Location Reachability Problem

The Location Reachability Problem

Given: A timed automaton \mathcal{A} and one of its locations ℓ . Question: Is ℓ reachable?

That is, is there a transition sequence of the form

$$\langle \ell_{ini}, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle$$
 with $\ell_n = \ell$

in the labelled transition system $\mathcal{T}(\mathcal{A})$?

-13 - 2017-12-14 -

- Note: Decidability is not soo obvious, recall that
 - clocks range over real numbers, thus infinitely many configurations,
 - at each configuration, uncountably many transitions $\stackrel{t}{\rightarrow}$ may originate
- **Consequence**: The timed automata as we consider them here **cannot** encode a 2-counter machine, and they are strictly less expressive than DC.

Decidability of Location Reachability for TA

5/35

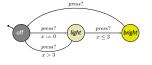
Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- Observe: clock constraints are simple - w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ abstracts from uncountably many delay transitions, still infinite-state.
- Lemma 4.20: location reachability of A is preserved in U(A).
- Def. 4.29: region automaton $\mathcal{R}(\mathcal{A})$ equivalent configurations collapse into regions
- Lemma 4.32: location reachability of U(A) is preserved in R(A).
- Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

-13 - 2017-12-14 -



7/35

Without Loss of Generality: Natural Constants

Recall: $\varphi ::= x \sim c \mid x - y \sim c \mid \varphi \land \varphi, \ x, y \in X, \ c \in \mathbb{Q}_0^+, \text{ and } \sim \in \{<, >, \le, \ge\}.$

- Let $C(\mathcal{A}) = \{ c \in \mathbb{Q}_0^+ \mid c \text{ appears in } \mathcal{A} \} C(\mathcal{A}) \text{ is finite! (Why?)}$
- Let t_A be the least common multiple of the denominators in C(A).
- Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by t_A .

$$\mathcal{A}: \quad \underbrace{x > \begin{pmatrix} 1 \\ 4 \end{pmatrix}}_{x < \begin{pmatrix} 1 \\ 3 \end{pmatrix}} \underbrace{y < (10)}_{y < 10} y - z > 5 \qquad C(\mathcal{A}) = \left\{ \begin{array}{c} \frac{1}{4} & \frac{1}{3} & 10, 5 \right\} \\ t_{\mathcal{A}} = 72 \end{array}$$

8/35

 $\textbf{Recall:} \hspace{0.1 cm} \varphi ::= x \sim c \mid x - y \sim c \mid \varphi \wedge \varphi, \hspace{0.1 cm} x, y \in X, \hspace{0.1 cm} c \in \mathbb{Q}_0^+ \text{, and} \hspace{0.1 cm} \sim \in \{<,>,\leq,\geq\}.$

- Let $C(\mathcal{A}) = \{ c \in \mathbb{Q}_0^+ \mid c \text{ appears in } \mathcal{A} \} C(\mathcal{A}) \text{ is finite! (Why?)}$
- Let t_A be the least common multiple of the denominators in C(A).
- Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by t_A .

$$\mathcal{A}: \quad \underbrace{x > \frac{1}{4}}_{x < \frac{1}{3}} \qquad \underbrace{y < 10} y - z > 5 \qquad C(\mathcal{A}) = \left\{\frac{1}{3}, \frac{1}{4}, 5, 10\right\}}_{t_{\mathcal{A}} = 12}$$

Without Loss of Generality: Natural Constants

-13 - 2017-12-14 -

- 13 - 2017-12-14 -

Recall: $\varphi ::= x \sim c \mid x - y \sim c \mid \varphi \land \varphi, \ x, y \in X, \ c \in \mathbb{Q}_0^+, \text{ and } \sim \in \{<, >, \leq, \geq\}.$

- Let $C(\mathcal{A}) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } \mathcal{A}\}\ C(\mathcal{A}) \text{ is finite! (Why?)}$
- Let t_A be the least common multiple of the denominators in C(A).
- Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by t_A .

$$\mathcal{A}: \underbrace{x > \frac{1}{4}}_{x < \frac{1}{3}} \underbrace{y < 10} y - z > 5$$

$$C(\mathcal{A}) = \left\{\frac{1}{3}, \frac{1}{4}, 5, 10\right\}$$

$$t_{\mathcal{A}} = 12$$

$$t_{\mathcal{A}} \cdot \mathcal{A}: \underbrace{e_{0}}_{x < 4} \underbrace{x > 3}_{y < 120} \underbrace{e_{0}}_{y < 120} y - z > 60$$

$$C(\mathcal{A}) = \left\{\frac{1}{3}, \frac{1}{4}, 5, 10\right\}$$

$$c_{\mathcal{A}} = 12$$

Without Loss of Generality: Natural Constants

Recall: $\varphi ::= x \sim c \mid x - y \sim c \mid \varphi \land \varphi, \ x, y \in X, \ c \in \mathbb{Q}_0^+$, and $\sim \in \{<, >, \leq, \geq\}$.

- Let $C(\mathcal{A}) = \{ c \in \mathbb{Q}_0^+ \mid c \text{ appears in } \mathcal{A} \} C(\mathcal{A}) \text{ is finite! (Why?)}$
- Let t_A be the least common multiple of the denominators in C(A).
- Let $t_{\mathcal{A}} \cdot \mathcal{A}$ be the TA obtained from \mathcal{A} by multiplying all constants by $t_{\mathcal{A}}$.
- Then:

-13 - 2017-12-14 -

- $C(t_{\mathcal{A}} \cdot \mathcal{A}) \subset \mathbb{N}_0.$
- A location ℓ is reachable in t_A · A if and only if ℓ is reachable in A.
- That is: we can, without loss of generality, in the following consider only timed automata \mathcal{A} with $C(\mathcal{A}) \subset \mathbb{N}_0$.

Definition. Let x be a clock of timed automaton \mathcal{A} (with $C(\mathcal{A}) \subset \mathbb{N}_0$). We denote by $c_x \in \mathbb{N}_0$ the **largest time constant** c that appears together with x in a constraint of \mathcal{A} .

8/35

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

- Observe: clock constraints are simple – w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✗ Def. 4.19: time-abstract transition system U(A) − abstracts from uncountably many delay transitions, still infinite-state.
- Lemma 4.20: location reachability of A is preserved in U(A).
- Def. 4.29: region automaton R(A) equivalent configurations collapse into regions
- Lemma 4.32: location reachability of U(A) is preserved in R(A).
- **X** Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

2017-12-14

Recall: $\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{\stackrel{\lambda}{\rightarrow} \mid \lambda \in \mathsf{Time} \cup B_{?!}\}, C_{ini})$

GSAXB GSBXC GovzSAXC

• Note: The $\xrightarrow{\lambda}$ are binary relations on configurations.

Definition. Let \mathcal{A} be a TA. For all $\langle \ell_1, \nu_1 \rangle$, $\langle \ell_2, \nu_2 \rangle \in Conf(\mathcal{A})$, $\langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_1} \circ \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle$ if and only if there exists some $\langle \ell', \nu' \rangle \in Conf(\mathcal{A})$ such that $\langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_1} \langle \ell', \nu' \rangle$ and $\langle \ell', \nu' \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle$.

Remark. The following property of time additivity holds.

$$\forall t_1, t_2 \in \mathsf{Time} : \xrightarrow{t_1} \circ \xrightarrow{t_2} = \xrightarrow{t_1+t_2}$$

10/35

Time-abstract Transition System

Definition 4.19. [*Time-abstract transition system*] Let \mathcal{A} be a timed automaton. The **time-abstract transition system** $\mathcal{U}(\mathcal{A})$ is obtained from $\mathcal{T}(\mathcal{A})$ (Def. 4.4) by taking

$$\mathcal{U}(\mathcal{A}) = (Conf(\mathcal{A}), B_{?!}, \{\Longrightarrow^{\alpha} \mid \alpha \in B_{?!}\}, C_{ini})$$

where

- 13 - 2017-12-14 - Stats

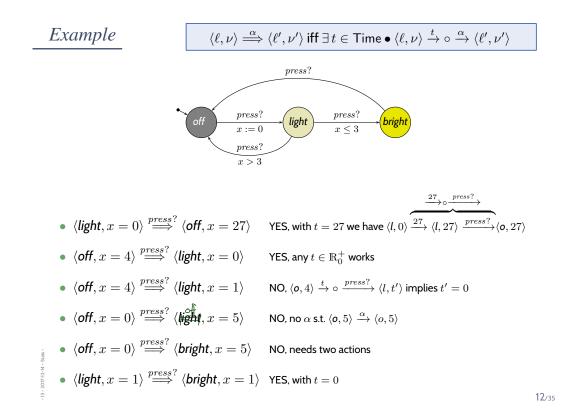
-13 - 2017-12-14 - Stats

$$\stackrel{\alpha}{\Longrightarrow} \subseteq Conf(\mathcal{A}) \times Conf(\mathcal{A})$$

is defined as follows: Let $\langle \ell, \nu \rangle, \langle \ell', \nu' \rangle \in Conf(\mathcal{A})$ be configurations of \mathcal{A} and $\alpha \in B_{?!}$ an action. Then

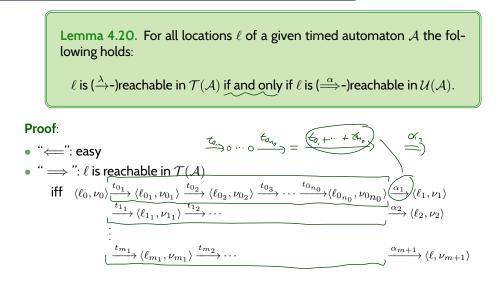
 $\underbrace{\langle \ell,\nu\rangle}_{i} \underbrace{\underset{j}{\overset{\alpha}{\Longrightarrow}}}_{i} \underbrace{\langle \ell',\nu'\rangle}_{i}$ if and only if there exists $t\in T$ ime such that

 $\langle \ell, \nu \rangle \xrightarrow{t} \circ \xrightarrow{\alpha} \langle \ell', \nu' \rangle.$



Location Reachability is preserved in $\mathcal{U}(\mathcal{A})$

2017-12-14



Lemma 4.20. For all locations ℓ of a given timed automaton \mathcal{A} the following holds:

 ℓ is $(\xrightarrow{\lambda})$ -reachable in $\mathcal{T}(\mathcal{A})$ if and only if ℓ is $(\xrightarrow{\alpha})$ -reachable in $\mathcal{U}(\mathcal{A})$.

Proof:

-13 - 2017-12-14 -

• "
$$\Leftarrow$$
": easy
• " \Rightarrow ": ℓ is reachable in $\mathcal{T}(\mathcal{A})$
iff $\langle \ell_0, \nu_0 \rangle \xrightarrow{t_{0_1}} \langle \ell_{0_1}, \nu_{0_1} \rangle \xrightarrow{t_{0_2}} \langle \ell_{0_2}, \nu_{0_2} \rangle \xrightarrow{t_{0_3}} \cdots \xrightarrow{t_{0_{n_0}}} \langle \ell_{0_{n_0}}, \nu_{0_{n_0}} \rangle \xrightarrow{\alpha_1} \langle \ell_1, \nu_1 \rangle$
 $\xrightarrow{t_{1_1}} \langle \ell_{1_1}, \nu_{1_1} \rangle \xrightarrow{t_{1_2}} \cdots$
 \vdots
 $\xrightarrow{t_{m_1}} \langle \ell_{m_1}, \nu_{m_1} \rangle \xrightarrow{t_{m_2}} \cdots$
implies $\langle \ell_0, \nu_0 \rangle \xrightarrow{\alpha_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{m+1}} \langle \ell, \nu_{m+1} \rangle$

13/35

Decidability of The Location Reachability Problem

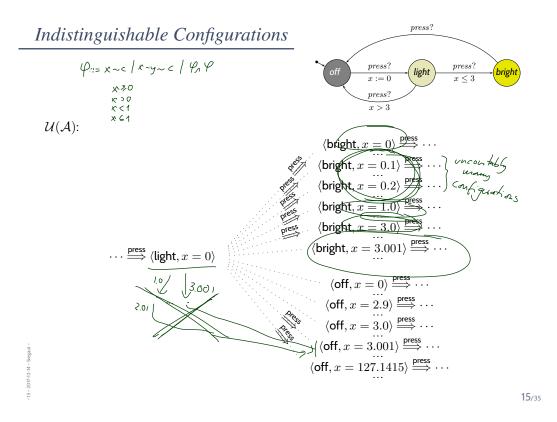
Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple – w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- Def. 4.19: time-abstract transition system U(A) – abstracts from uncountably many delay transitions, still infinite-state.
- Lemma 4.20: location reachability of \mathcal{A} is preserved in $\mathcal{U}(\mathcal{A})$.
- Def. 4.29: region automaton R(A) equivalent configurations collapse into regions
- Lemma 4.32: location reachability of U(A) is preserved in R(A).
- **X** Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

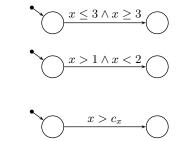
2017-12-14



Distinguishing Clock Valuations: One Clock

- Assume \mathcal{A} with only a single clock, i.e. $X = \{x\}$ (recall: $C(\mathcal{A}) \subset \mathbb{N}$).
 - \mathcal{A} could detect, for a given ν , whether $\nu(x) \in \{0, \dots, c_x\}$. • \mathcal{A} cannot distinguish ν_1 and ν_2 if $\nu_i(x) \in (k, k+1)$, i = 1, 2, and $k \in \{0, \dots, c_x - 1\}$.
 - \mathcal{A} cannot distinguish ν_1 and ν_2 if $\nu_i(x) > c_x$, i = 1, 2.

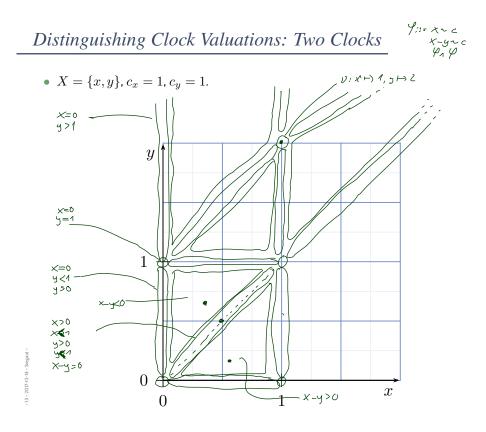
- 13 - 2017-12-14 - Sregau



• If $c_x \ge 1$, there are $(2c_x + 2)$ equivalence classes:

 $\{\{0\}, (0, 1), \{1\}, (1, 2), \dots, \{c_x\}, (c_x, \infty)\}$

If $\nu_1(x)$ and $\nu_2(x)$ are in the same equivalence class, then ν_1 and ν_2 are indistiguishable by \mathcal{A} .



17/35

Helper: Floor and Fraction

• Recall:

Each $q \in \mathbb{R}^+_0$ can be split into

- floor $\lfloor q \rfloor \in \mathbb{N}_0$ and fraction $frac(q) \in [0, 1)^*$ open hiteral

such that

- 13 - 2017-12-14 - Sregaut

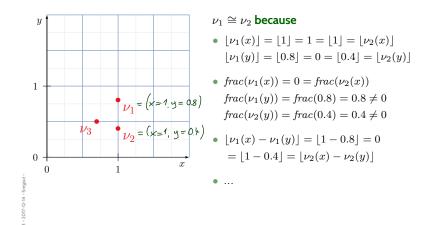
$$q = \lfloor q \rfloor + frac(q).$$

-13 - 2017-12-14 - Sregau

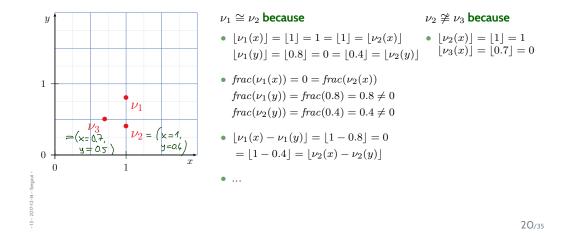
Definition. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ for each clock $x \in X$, and ν_1, ν_2 clock valuations of X. We set $\nu_1 \cong \nu_2$ if and only if the following four conditions are satisfied: (1) For all $x \in X$, $\lfloor \nu_1(x) \rfloor = \lfloor \nu_2(x) \rfloor$ or both $\nu_1(x) > c_x$ and $\nu_2(x) > c_x$. (2) For all $x \in X$ with $\nu_1(x) \le c_x$, $frac(\nu_1(x)) = 0$ if and only if $frac(\nu_2(x)) = 0$. (3) For all $x, y \in X$, $\lfloor \nu_1(x) - \nu_1(y) \rfloor = \lfloor \nu_2(x) - \nu_2(y) \rfloor$ or both $|\nu_1(x) - \nu_1(y)| > c$ and $|\nu_2(x) - \nu_2(y)| > c$. (4) For all $x, y \in X$ with $-c \le \nu_1(x) - \nu_1(y) \le c$, $frac(\nu_1(x) - \nu_1(y)) = 0$ if and only if $frac(\nu_2(x) - \nu_2(y)) = 0$. Where $c = \max\{c_x, c_y\}$.

19/35

 $\begin{array}{l} \hline Example: Regions \\ \hline (1) \ \forall x \in X \bullet \lfloor \nu_1(x) \rfloor = \lfloor \nu_2(x) \rfloor \lor (\nu_1(x) > c_x \land \nu_2(x) > c_x) \\ \hline (2) \ \forall x \in X \bullet \nu_1(x) \leq c_x \implies (frac(\nu_1(x))) = 0 \iff frac(\nu_2(x)) = 0) \\ \hline (3) \ \forall x, y \in X \bullet \lfloor \nu_1(x) - \nu_1(y) \rfloor = \lfloor \nu_2(x) - \nu_2(y) \rfloor \\ \lor (|\nu_1(x) - \nu_1(y)|) > c \land |\nu_2(x) - \nu_2(y)| > c) \\ \hline (4) \ \forall x, y \in X \bullet -c \leq \nu_1(x) - \nu_1(y) \leq c \\ \implies (frac(\nu_1(x) - \nu_1(y))) = 0 \iff frac(\nu_2(x) - \nu_2(y)) = 0) \\ \end{array}$



Example: Regions



Regions

- 13 - 2017-12-14 - Sregaut

Proposition. \cong is an **equivalence relation**.

Definition 4.27. For a given valuation ν we denote by $[\nu]$ the equivalence class of ν . We call the equivalence classes of \cong <u>regions</u>.

The Region Automaton

Definition 4.29. [*Region Automaton*] The region automaton $\mathcal{R}(\mathcal{A})$ of the timed automaton \mathcal{A} is the labelled transition system

$$\mathcal{R}(\mathcal{A}) = (Conf(\mathcal{R}(\mathcal{A})), B_{?!}, \{\frac{\alpha}{\rightarrow}_{R(\mathcal{A})} | \alpha \in B_{?!}\}, C_{ini})$$

where

• $Conf(\mathcal{R}(\mathcal{A})) = \{ \langle \ell, [\nu] \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \},\$

• for each
$$\alpha \in B_{?!}$$
,
 $\underbrace{\langle \ell, [\nu] \rangle}_{R(\mathcal{A})} \underbrace{\langle \ell', [\nu'] \rangle}_{R(\mathcal{A})}$ if and only if $\langle \ell, \nu \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu' \rangle$

in
$$\mathcal{U}(\mathcal{A})$$
, and

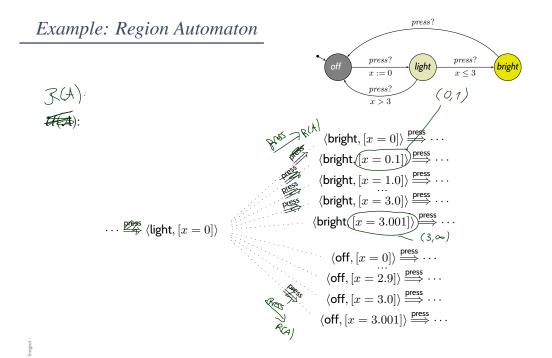
-13 - 2017-12-14 - Sregaut

2017-12-14

• $C_{ini} = \{ \langle \ell_{ini}, [\nu_{ini}] \rangle \} \cap Conf(\mathcal{R}(\mathcal{A})) \text{ with } \nu_{ini}(X) = \{0\}.$

Proposition. The transition relation of $\mathcal{R}(\mathcal{A})$ is **well-defined**, that is, independent of the choice of the representative ν of a region $[\nu]$.

22/35



Remark 4.30. A configuration $\langle \ell, [\nu] \rangle$ is reachable in $\mathcal{R}(\mathcal{A})$ if and only if all $\langle \ell, \nu' \rangle$ with $\nu' \in [\nu]$ are reachable.

In other words: it is possible to enter the configuration $\langle \ell, \nu' \rangle$ with an action transition (possibly some delay before).

The clock values reachable by staying / letting time pass in ℓ are **not explicitly** represented by the regions of $\mathcal{R}(\mathcal{A})$.

24/35

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

- $\checkmark \text{Observe: clock constraints are simple} \\ w.l.o.g. assume constants <math>c \in \mathbb{N}_0.$
- \mathcal{V} Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ abstracts from uncountably many delay transitions, still infinite-state.
- $\checkmark Lemma 4.20: location reachability of <math>\mathcal{A}$ is preserved in $\mathcal{U}(\mathcal{A})$.
- **Def. 4.29**: region automaton $\mathcal{R}(\mathcal{A})$ equivalent configurations collapse into regions
- Lemma 4.32: location reachability of U(A) is preserved in R(A).
- **X** Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

-12-14 -

Region Automaton Properties

Lemma 4.32. [Correctness] For all locations ℓ of a given timed automaton \mathcal{A} the following holds: ℓ is reachable in $\mathcal{U}(\mathcal{A})$ if and only if ℓ is reachable in $\mathcal{R}(\mathcal{A})$. For the Proof: $\begin{array}{c}
\overbrace{i}\\
\overbrace{d}\\
\overbrace{d}$

Lemma 4.26. [Bisimulation] \cong is a strong bisimulation.

26/35

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

-13 - 2017-12-14 -

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple – w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system U(A) – abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lemma 4.20: location reachability of A is preserved in U(A).
- ✓ Def. 4.29: region automaton R(A) equivalent configurations collapse into regions
- ✓ Lemma 4.32: location reachability of U(A) is preserved in $\mathcal{R}(A)$.
- **X** Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then $\underbrace{(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}}_{\text{is an upper bound on the number of regions.}} =: \mathbb{D}$

Proof: Olderog and Dierks (2008)

28/35

The Number of Regions

2017-12-14 -

- 13 - 2017-12-14 - Sregn

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then

 $(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}$

is an upper bound on the number of regions.

Proof: Olderog and Dierks (2008)

- Lemma 4.28 in particular tells us that each timed automaton (in our definition) has finitely many regions.
- Note: the upper bound is a worst case / upper bound, not an exact number.

Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple – w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system U(A) – abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lemma 4.20: location reachability of A is preserved in U(A).
- ✓ Def. 4.29: region automaton R(A) equivalent configurations collapse into regions
- ✓ Lemma 4.32: location reachability of U(A) is preserved in $\mathcal{R}(A)$.
- ✓ Lemma 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

-13 - 2017-12-14

29/35

Putting It All Together

Let $\mathcal{A} = (L, B, X, I, E, \ell_{ini})$ be a timed automaton and $\ell \in L$ a location.

- $\mathcal{R}(\mathcal{A})$ can be constructed effectively.
- There are finitely many locations in L (by definition).
- There are finitely many regions by Lemma 4.28.
- So $Conf(\mathcal{R}(\mathcal{A}))$ is finite (by construction).
- It is decidable whether there exists a sequence

$$\langle \ell_{ini}, [\nu_{ini}] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_1, [\nu_1] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \dots \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_n, [\nu_n] \rangle$$

such that $\ell_n = \ell$ (reachability in graphs).

Thus we have just shown:

- 13 - 2017-12-14 - Sdec

Theorem 4.33. [*Decidability*] The location reachability problem for timed automata is **decidable**.

(dl. light ~ x=27)

- Given: Timed automaton A, one of its locations ℓ , and a clock constraint φ .
- Question: Is a configuration $\langle \ell, \nu \rangle$ reachable where $\nu \models \varphi$, i.e. is there a transition sequence of the form

 $\langle \ell_{ini}, \nu_{ini} \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$

in the labelled transition system $\mathcal{T}(\mathcal{A})$ with $\nu \models \varphi$?

• Note: we just observed that $\mathcal{R}(\mathcal{A})$ loses some information about the clock valuations that are possible in / from a region.

Theorem 4.34. The constraint reachability problem for timed automata is decidable.

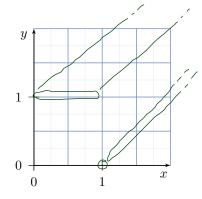
31/35

The Delay Operation

-13 - 2017-12-14 - Sdec

- 13 - 2017-12-14 - Sdec

- Let $[\nu]$ be a clock region.
- We set $delay[\nu] := \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \mathsf{Time}\}.$



Note: delay[\nu] can be represented as a finite union of regions.
 For example, with our two-clock example we have

$$delay[x = y = 0] = [x = y = 0] \cup [0 < x = y < 1] \cup [x = y = 1] \cup [1 < x = y]$$

Tell Them What You've Told Them...

- Location Reachable Problem: is location ℓ reachable in A?
- Decidability proof: [AD94]
 - normalise constants,
 - construct the Time Abstract Transition System
 - "get rid of" delay transitions,
 - still uncountably many configurations

ility

- collapse equivalent clock valuations interegions
 - obtain finitely many (abstract) configurations
- construct the Region Automaton
 - it is finite, $\sqrt{}$
 - and preserves location reachability. from $\mathcal{U}(\mathcal{A})$
- Thus: there are chances to get automatic verification for TA.
- Result can easily be lifted to constraint reachability.

33/35

References

-13 - 2017-12-14 - Sttwyti

References

Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

-13 - 2017-12-14 - main -

35/35