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Content

e The Location Reachability Problem
o ...is decidable for TA:

e Normalised Constants

e Time Abstract Transition System
e Regions:

e Equivalence Classes of Clock Valuations

e The Region Automaton
o ...isfinite
o ...and effectively constructable.

o The Constraint Reachability Problem

o ...is decidable as well.

The Location Reachability Problem
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The Location Reachability Problem
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-
Given: A timed automaton A and one of its locations /.

Question: Is ¢ reachable?
That is, is there a transition sequence of the form

(linis Vo) 25 (01, v1) 22 (b, 10) 225 ... 225 (€, ) with £, = £

A~~~

in the labelled transition system 7(A)?

\

o Note: Decidability is not soo obvious, recall that
o clocks range over real numbers, thus infinitely many configurations,

e at each configuration, uncountably many transitions 5N may originate

o Consequence: The timed automata as we consider them here encode a

2-counter machine, and they are strictly less expressive than DC.

Decidability of Location Reachability for TA

5/35
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Decidability of The Location Reachability Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

Without Loss of Generality: Natural Constants

Observe: clock constraints are simple
- w.lL.o.g. assume constants ¢ € INo.

Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

Lemma 4.20: location reachability
of Ais preserved in I/ (A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lemma 4.32: location reachability
of U(A) is preserved in R(A).

Lemma 4.28: R(A) is finite.

-13-2017-12-14 - Snatc -

7735

Recall g =z ~c|lz—y~clpAp, z,y€X, ceQf,and ~€ {<,>,<,>}.

o Let C(A) = {c € Qf | cappearsin A} - C(A)is finite! (Why?)
o Let ¢4 be the least common multiple of the denominators in C(A).

o Lett4 - .Abe the TA obtained from .4 by multiplying all constants by ¢ 4.

y <

i
T3

ca)={4 % o5t
ta=12

8/35



Without Loss of Generality: Natural Constants
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Recall pu=z~c|lz—y~clpAp, z,y€X, ceQf,and ~€ {<,>,<,>}.

o Let O(A) = {c € Qf | cappearsin A} - C(A)is finite! (Why?)
o Let¢ 4 be the least common multiple of the denominators in C(A).
o Lett4 - .Abe the TA obtained from .4 by multiplying all constants by ¢ 4.

A: > C(A)={%, 1 510}

tqg=12

=

Yy—2>95

ol

Without Loss of Generality: Natural Constants
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Recall g =z ~c|lz—y~clpAp, z,y€X, ceQf,and ~€ {<,>,<,>}.

o Let C(A) = {c € Qf | cappearsin A} - C(A)is finite! (Why?)
o Let ¢4 be the least common multiple of the denominators in C(A).
o Lett4 - .Abe the TA obtained from .4 by multiplying all constants by ¢ 4.

A: z>1 C(A)={%, 1510}
—2z>95
@)———C)Dv-= =12

r< i y < 10

Ce= &

ta - A: Cy - 120
y,z>60 2= €0

T <4 y < 120

8/35



Without Loss of Generality: Natural Constants
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Recall pu=z~c|lz—y~clpAp, z,y€X, ceQf,and ~€ {<,>,<,>}.

Let C(A) = {c € Qf | cappearsin A} - C(A)is finite! (Why?)
Let ¢ 4 be the least common multiple of the denominators in C(A).
Let ¢4 - A be the TA obtained from .4 by multiplying all constants by ¢ 4.

e Then:
o C(ta-A) C Ny.
e Alocation ¢ is reachable in ¢ 4 - A if and only if £ is reachable in A.

That is: we can, without loss of generality, in the following
consider only timed automata .A with C(A) C INy.

Definition. Let = be a clock of timed automaton A (with C'(A) C INy).

We denote by ¢, € IN, the largest time constant ¢ that appears together
with z in a constraint of A.

Decidability of The Location Reachability Problem

-13-2017-12-14 - Stats -

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v/ Observe: clock constraints are simple
- w.l.o.g. assume constants ¢ € INo.

X Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

X Lemma 4.20: location reachability
of Ais preserved in U (A).

X Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

X Lemma 4.32: location reachability
of U(A) is preserved in R(A).

X Lemma 4.28: R(A) is finite.

8/35
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Helper: Relational Composition
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Recall: 7(A) = (Conf(A), Time U By, {2 A € Time U By}, Cins)

nEAR
A . . . , L <cBx C
¢ Note: The = are binary relations on configurations. /' c 4xc

p
Definition. Let A be a TA. For all (¢1,11), (¢2,v2) € Conf(A),
\

—

-

(01,01) 25 0 2% (0, 1)

if and only if there exists some (¢, ') € Conf(.A) such that

(61,11) 25 (€', V') and (¢',1/) 225 (05, 15).
L h -

Remark. The following property of time additivity holds.

. t t t1+t
Vi1, ta € Time:—s 0 = = =2

Time-abstract Transition System

-13-2017-12-14 - Stats -

Definition 4.19. [Time-abstract transition system]
Let A be a timed automaton.

The time-abstract transition system ¢/(.A) is obtained
from 7 (A) (Def. 4.4) by taking

U(A) = (C’onf(.A),B:z!, {:a>| o € B?!},Cim-)

where
=2.C Conf(A) x Conf(A)

is defined as follows:  Let (¢, v), (¢, V') € Conf(A) be configurations of
Aand a € B an action. Then

(,v) = (')
£)

1
/

<€,'V> Lo X ().

if and only if there exists ¢ € Time such tha

L J

10y35
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Example (0, v) == (¢} iff 3t € Time o () 5 0 X (/1)
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press?

>3

27 press?
LGN AN

—_——

(light, = = 0) =57 (off, 2 = 27)  YES, with ¢ = 27 we have (,0) 2% (I, 27) 2% (0, 27)

o (off,x =4) press? (light, z = 0) YES, any t € R works

t press?

(off, = 4) "5 (light,x = 1) NO, (0,4) % o 25 (1, /) implies ¢/ — 0

o (off,x =0) pgi? <ﬂ1§ﬁ x =5) NO, no asit. (0, 5) = (0, 5)
o (off,x =0) presg? (bright,z = 5)  NO, needs two actions

(light, z = 1) "2 (bright, z = 1) YES, witht =0

1235

Location Reachability is preserved in U(A)
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Lemma 4.20. For all locations ¢ of a given timed automaton A the fol-
lowing holds:

Cis (25-)reachable in T(A) if and only if /is (==-)reachable in 2/(A).

Proof:
o, é"v-o 'éd,*f—"' "'Zg'n o,
o “e=": easy 00— = ; ; \:)
—1

o “= ":/lisreachablein T(A)

(S S

) t t t top, o
iff (0o, v0)—L (Lo, ,10,) —25 (Lo, voy) —2s - - —0><€0n0,1/0n0)Q(€1,1/1)
N

(31 1
—L v, =2 225 {0y, 1)
[— )
tnLl tm QAm 41
> Ly s Vmy ) r > (L, Vit 1)
-

13735



Location Reachability is preserved in U(A)
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Lemma 4.20. For all locations ¢ of a given timed automaton A the fol-
lowing holds:

¢is (2-)reachable in 7 (A) if and anly if ¢ is (=2>-)reachable in 2/(.A).

Proof:
o “«<=":easy no € Wo, ie.
e “=":lisreachable in 7 (A) sequence may be
o empty
t =300 to,
.ff tol t02 tOS tOnO aq
| (Lo, vo)— (Loy,v0,) — Loy, V0y) —> - —)<€0n0 s V0n0> — (L1,11)
t1 t1 [e%
—5 (l1y,v1y) =2 =25 (02, 12)
tm tmg by t—2> [¢] 3) I
s iy s Vimy ) *—>/ s , Umy1)
. . « @ Am 41
implies (€o, vo) == ({1,v1) = ... (, Vpmy1)

13/35

Decidability of The Location Reachability Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v Observe: clock constraints are simple
- w.l.o.g. assume constants ¢ € INo.

\/Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

\yLemma 4.20: location reachability
of Ais preserved in U (A).

X Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

X Lemma 4.32: location reachability
of U(A) is preserved in R(A).

X Lemma 4.28: R(A) is finite.

14/35



Indistinguishable Configurations
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@':: X~c /"“7”4 / 784

%70
x>0
<A
X <1

=2 (light, = = 0)

/'\(Z \I/o’.odl

201

(bright, z = 3 001)

(off, = 0) =%
(off, x—29) =
(off,z = 3.0) = =..
(off, = = 3.001) &=
© (off,x = 127.1415) 2%

press

press

15/35

Distinguishing Clock Valuations: One Clock

- 13-2017-12-14 - Sregaut -

o Assume A with only a single clock, i.e. X = {z}

o A could detect, for a given v,
whether v(z) € {0,...,¢,}.

o A cannot distinguispv; and vy
if vi(z) € (k,k+1),i=1,2,
andk € {0,...,¢c; — 1}.

e A cannot distinguish vy and v,
if v;(z) > cpi=1,2.

/w/Q/va/

o If ¢, > 1, there are (2¢, + 2) equivalence classes:

{ca}, (cas

{{0},(0,1),{1},(1,2),...,

(recall: C(A) C IN).

CwSSAxZ?)C
‘()x>1/\x<2©

‘( : T > Cy ( :

o0)}

If 11 (z) and vz (x) are in the same equivalence class,

then v, and v are indistiguishable by A.

16/35



Distinguishing Clock Valuations: Two Clocks ,,.,%;;C
'XZ{x,y},cz:Lcy:L I)»Y"—)4JI—>Z
9>1
y z
§ %J %
X=0 1
SN
3 o I

x>0 i 27 :
x& ¢
Y>0 /
54 /
X426 7 “

0 4 =
O)\—\_’gl’\ X420 1735

Helper: Floor and Fraction

e Recall:
Each ¢ € R can be splitinto
e floor |¢| € Ny and e dhsias
e fraction frac(q) € [0,1)
such that
q = lql + frac(q).

L3¢ =73
74%(3./4)7 0 /4

18/35



An Equivalence-Relation on Valuations

- 13-2017-12-14 - Sregaut -

(3) Forallz,y e

Definition. Let X be a set of clocks, ¢, € IN, for each clock x € X, and
v1, v clock valuations of X.

We set v; = 15 if and only if the following four conditions are satisfied:

(1) Forallz € X, |vi(z)] = |v2(z)| or both vy (z) > ¢ and va(z) > co.

(2) Forallz € X with v1(z) < cg,

frac(vi(x)) = 0if and only if frac(vz2(z)) = 0.

X,

or both |v1(x) — v1(y)| > cand |v2(x) — v2(y)| > c.

(4) Forallz,y € X with —c < vy (z) —v1(y) <

frac(vi(z) — v1(y)) = 0if and only if frac(va(z) — v2(y)) = 0.

[vi(z) —wi(y)] = [v2(2) — v2(y))

Example: Regions

- 13-2017-12-14 - Sregaut -

KWhere ¢ = max{cz, ¢y }- /
19/3s

() Vz e X o |vi(z)]| = |v2(z)] V (11 () > ca Ava(z) > Ca)
(2) Vz € Xovy(z) <o = (frac(vi(z)) =0 <= frac(v2(z)) = 0)
B) Va,y € X o [v1(z) —11(y)] = |v2(x) —rv2(y)]

V (|rr(z) — vi(y)| > e A |va(z) — v2(y)| > ¢)
(4) Ve,ye X e —c<uvi(z) —1i(y) <c

= (frac(vi(z) =1 (y)) =0 <= frac(vz(z) — v2(y)) = 0)

v1 = vy because

o n@)] =[1]=1=[1] = [r2(z)]

lv1(y)] = [0.8] =0 = [0.4] = [v2(y)]

o frac(vi(z)) =0 = frac(v2(x))

"Vlcé(

)
—14= c.g) frac(vi(y)) = frac(0.8) = 0.8 #0
)

frac(vz2(y)) = frac(0.4) =04 #0

= Gh,

") o lne) — ) = 11— 08] =0
= [1-04] = [1a(e) — 12(»)]

20y35



Example: Regions | 1) Vz e X o [m(x)] = [1()] V (n1(2) > e Ava(z) > c)

-13-2017-12-14 - Sregaut -
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(2) Vz € X ovy(z) <o = (frac(vi(z)) =0 < frac(v2(z)) = 0)

B) Va,y € X o [11(x) —11(y)] = |v2(x) —rv2(y)]
V ([va(z) = i) > e fva(z) — va(y)] > ¢

4) Vz,y e Xe—c<un(r)—wn(y) <c
= (frac(ni(z) —11(y)) =0 <= frac(vz(z) —v2(y)) = 0)

y v1 = v, because vy 2 v3 because

e @) =11 =1=[1] = @] o |w@)]=[1]=1
()] = 10.8] =0=[04] = [a(y)] @] =107]=0

1 o frac(vi(z)) =0 = frac(v2(x))
’, frac(v1(y)) = frac(0.8) = 0.8 # 0
_ 1 frac(va(y)) = frac(0.4) = 0.4 # 0
iy, 2= <t e i@ - m) = - 08) =0
ob—uzos) | I [ 4= ) - ()
0 1
20y3s
Regions

Proposition. = is an equivalence relation.

Definition 4.27.
For a given valuation v we denote by [v] the equivalence class of v.

We call the equivalence classes of = reéions.

21s35



The Region Automaton
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7

\
Definition 4.29. [Region Automaton] The region automaton R (.A) of the
timed automaton A is the labelled transition system
R(A) = ( Conf(R(A)), B, {=>rea) @€ Ba}, Cini)
where
o Conf(R(A))={{,[v]) | e L,v: X — Time,v = 1({)},
o foreach a € By,
¢ v SR ( ]) if and only if (¢, v) == (¢', V)
inl(A),and
J

Proposition. The transition relation of R (.A) is well-defined, that is, inde-
pendent of the choice of the representative v of a region [v].

Example: Region Automaton

press?

- 13-2017-12-14 - Sregaut -

~ press? @ press?
z:=0 r<3
. press?
KCA\ ' >3 (0/ 7)

)

K
- (bright, [z = 0])

(bright =..
_ (bright, [z = 1.0]) =2 .

e (bright, o = 3.00) B

B Gight [o=0)) . <b”ghto;j'
S (off e =0) B

(off, [z = 2.9]) =2 ...

press

% B (off [o = 3.0)) B ...
N (off, [x = 3.001]) E£ ...

2235
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Remark

Remark 4.30. A configuration (¢, [v]) is reachable in R(.A)
if and only if all (¢, ) with v/ € [v] are reachable.

In other words: it is possible to enter the configuration (¢, v")
with an action transition (possibly some delay before).

The clock values reachable by staying / letting time pass in ¢ are
not explicitly represented by the regions of R(A).

Decidability of The Location Reachability Problem

-13 - 2017-12-14 - Sraprop -

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

V Observe: clock constraints are simple
- w.l.o.g. assume constants ¢ € INo.

\7 Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

\l7 Lemma 4.20: location reachability
of Ais preserved in U (A).

\v Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

X Lemma 4.32: location reachability
of U(A) is preserved in R(A).

X Lemma 4.28: R(A) is finite.

2435
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Region Automaton Properties
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Lemma 4.32. [Correctness]
For all locations ¢ of a given timed automaton A the following holds:

¢ is reachable in /(A) if and only if £ is reachable in R (A).

=5 c’

=3

C
For the Proof: ; :
o o —rot) A’

p
a (strong) bisimulation if and only if, whenever
vy ~ V3 and <£, I/1> :a> <€,, I/{>

then there exists v, with ] ~ v} and (£, o) == (', }).

Definition 4.21. [Bisimulation] An equivalence relation ~ on valuations is

Lemma 4.26. [Bisimulation] = is a strong bisimulation.

Decidability of The Location Reachability Problem

- 13- 2017-12-14 - Sregnum -

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v Observe: clock constraints are simple
- w.l.o.g. assume constants ¢ € INo.

v Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

v/ Lemma 4.20: location reachability
of Ais preserved in U (A).

v Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

v/ Lemma 4.32: location reachability
of U(A) is preserved in R(A).

X Lemma 4.28: R(A) is finite.

26/35
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The Number of Regions
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Lemma 4.28. Let X be a set of clocks, ¢, € IN; the maximal constant for
eachz € X, and ¢ = max{c, | z € X}. Then

e+ 2)X1 . (4¢ + 3)3XI-1XI-1)

is an upper bound on the number of regions.

Proof: Olderog and Dierks (2008)

Caif (RGA) = [ox Vall
2]

The Number of Regions

-13 - 2017-12-14 - Sregnum -

Lemma 4.28. Let X be a set of clocks, ¢, € IN; the maximal constant for
eachz € X, and ¢ = max{c, | z € X}. Then

(2c + 2)X1 . (4c + 3)3IXI0X1-D

is an upper bound on the number of regions.

Proof: Olderog and Dierks (2008)

e Lemma 4.28 in particular tells us that each timed automaton (in our definition)
has finitely many regions.

o Note: the upper bound is a worst case / upper bound, not an exact number.

28/35
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Decidability of The Location Reachability Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v Observe: clock constraints are simple
- w.lL.o.g. assume constants ¢ € INo.

v Def. 4.19: time-abstract transition system
U(A) - abstracts from uncountably many
delay transitions, still infinite-state.

v/ Lemma 4.20: location reachability
of Ais preserved in U/ (A).

v Def. 4.29: region automaton R(A) -
equivalent configurations collapse into regions

v/ Lemma 4.32: location reachability
of U(A) is preserved in R(A).

v Lemma 4.28: R(A) is finite.

2935

Putting It All Together
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Let A= (L,B,X,I,E,{;,)beatimed automaton and ¢ € L a location.

R(A) can be constructed effectively.

There are finitely many locations in L (by definition).

There are finitely many regions by Lemma 4.28.

So Conf(R(A)) is finite (by construction).

It is decidable whether there exists a sequence

(Cini, Vini]) = reay (01, [1]) SRy - =Ry o, Va])

such that ¢, = ¢ (reachability in graphs).

Thus we have just shown:

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

3035



The Constraint Reachability Problem | Cur byl =27
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e Given: Timed automaton 4, one of its locations ¢, and a clock constraint .

e Question: Is a configuration (¢, ) reachable
where v |= ¢, i.e. is there a transition sequence of the form

<€ini,l/ini> A—1> <€1,V1> g <€2,V2> )\—3> N A—n> <€n77/n> = <€, V>

in the labelled transition system 7 (A) with v = ¢?

o Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in / from a region.

Theorem 4.34.
The constraint reachability problem for timed automata is decidable.

3135

The Delay Operation
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o Let [v] be a clock region.

o Weset delay[v] :={v +t| v Zvandt € Time}.
7

/1 %
/|

o Note: delay[v] can be represented as a finite union of regions.

0 4

0 1 r

For example, with our two-clock example we have

delayr =y =0] =

3235



Tell Them What You’ve Told Them. . .
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bk
« Location Reachabldl Problem:
is location ¢ reachable in A?

o Decidability proof: JAD7% |
¢ normalise constants,
e construct the Time Abstract Transition System

o “getrid of " delay transitions,
e still uncountably many configurations

e collapse equivalent clock valuations int‘

o obtain finitely many (abstract) configurations

e construct the Region Automaton

o itis finite,/
e and preserves location reachability. 767% L((A.)

o Thus: there are chances to get automatic verification for TA.

o Result can easily be lifted to constraint reachability.

References
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