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Real-Time Systems

Lecture 13: Location Reachability

(or: The Region Automaton)
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Introduction

• Observables and Evolutions

• Duration Calculus (DC)

• Semantical Correctness Proofs

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• TA model-checking

• Extended Timed Automata

• Undecidability Results

obs : Time � D(obs) hobs0, �0i, t0
�0

�� hobs1, �1i, t1 . . .

• Automatic Verification...

...whether a TA satisfies a DC formula, observer-based

• Recent Results:

• Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or . . .
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• The Location Reachability Problem

• . . . is decidable for TA:

• Normalised Constants

• Time Abstract Transition System

• Regions:

• Equivalence Classes of Clock Valuations

• The Region Automaton

• . . . is finite

• . . . and effectively constructable.

• The Constraint Reachability Problem

• . . . is decidable as well.

The Location Reachability Problem
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Given: A timed automaton A and one of its locations ℓ.

Question: Is ℓ reachable?

That is, is there a transition sequence of the form

〈ℓini , ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

λn−−→ 〈ℓn, νn〉 with ℓn = ℓ

in the labelled transition system T (A)?

• Note: Decidability is not soo obvious, recall that

• clocks range over real numbers, thus infinitely many configurations,

• at each configuration, uncountably many transitions
t
−→ may originate

• Consequence: The timed automata as we consider them here cannot encode a
2-counter machine, and they are strictly less expressive than DC.

Decidability of Location Reachability for TA
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.
off light bright

press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

• Def. 4.19: time-abstract transition system
U(A) — abstracts from uncountably many
delay transitions, still infinite-state.

• Lemma 4.20: location reachability
of A is preserved in U(A).

• Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

• Lemma 4.32: location reachability
of U(A) is preserved in R(A).

• Lemma 4.28: R(A) is finite.

Without Loss of Generality: Natural Constants
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Recall: ϕ ::= x ∼ c | x− y ∼ c | ϕ ∧ ϕ, x, y ∈ X , c ∈ Q+
0 , and ∼∈ {<,>,≤,≥}.

• Let C(A) = {c ∈ Q+
0 | c appears in A} — C(A) is finite! (Why?)

• Let tA be the least common multiple of the denominators in C(A).

• Let tA · A be the TA obtained from A by multiplying all constants by tA.

x < 1

3
y < 10

x > 1

4
y − z > 5

A: C(A) =
{

1
3 ,

1
4 , 5, 10

}

tA = 12
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Recall: ϕ ::= x ∼ c | x− y ∼ c | ϕ ∧ ϕ, x, y ∈ X , c ∈ Q+
0 , and ∼∈ {<,>,≤,≥}.

• Let C(A) = {c ∈ Q+
0 | c appears in A} — C(A) is finite! (Why?)

• Let tA be the least common multiple of the denominators in C(A).

• Let tA · A be the TA obtained from A by multiplying all constants by tA.

x < 1

3
y < 10

x > 1

4
y − z > 5

A: C(A) =
{

1
3 ,

1
4 , 5, 10

}

tA = 12
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Recall: ϕ ::= x ∼ c | x− y ∼ c | ϕ ∧ ϕ, x, y ∈ X , c ∈ Q+
0 , and ∼∈ {<,>,≤,≥}.

• Let C(A) = {c ∈ Q+
0 | c appears in A} — C(A) is finite! (Why?)

• Let tA be the least common multiple of the denominators in C(A).

• Let tA · A be the TA obtained from A by multiplying all constants by tA.

x < 1

3
y < 10

x > 1

4
y − z > 5

A: C(A) =
{

1
3 ,

1
4 , 5, 10

}

tA = 12

x < 4 y < 120

x > 3
y − z > 60

tA · A:
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Recall: ϕ ::= x ∼ c | x− y ∼ c | ϕ ∧ ϕ, x, y ∈ X , c ∈ Q+
0 , and ∼∈ {<,>,≤,≥}.

• Let C(A) = {c ∈ Q+
0 | c appears in A} — C(A) is finite! (Why?)

• Let tA be the least common multiple of the denominators in C(A).

• Let tA · A be the TA obtained from A by multiplying all constants by tA.

• Then:

• C(tA · A) ⊂ N0.

• A location ℓ is reachable in tA · A if and only if ℓ is reachable in A.

• That is: we can, without loss of generality, in the following
consider only timed automata A with C(A) ⊂ N0.

Definition. Let x be a clock of timed automaton A (with C(A) ⊂ N0).

We denote by cx ∈ N0 the largest time constant c that appears together
with x in a constraint of A.

Decidability of The Location Reachability Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✘ Def. 4.19: time-abstract transition system
U(A) — abstracts from uncountably many
delay transitions, still infinite-state.

✘ Lemma 4.20: location reachability
of A is preserved in U(A).

✘ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✘ Lemma 4.32: location reachability
of U(A) is preserved in R(A).

✘ Lemma 4.28: R(A) is finite.
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Recall: T (A) = (Conf (A),Time ∪B?!, {
λ
−→| λ ∈ Time ∪B?!}, Cini)

• Note: The
λ
−→ are binary relations on configurations.

Definition. Let A be a TA. For all 〈ℓ1, ν1〉, 〈ℓ2, ν2〉 ∈ Conf (A),

〈ℓ1, ν1〉
λ1−→ ◦

λ2−→ 〈ℓ2, ν2〉

if and only if there exists some 〈ℓ′, ν′〉 ∈ Conf (A) such that

〈ℓ1, ν1〉
λ1−→ 〈ℓ′, ν′〉 and 〈ℓ′, ν′〉

λ2−→ 〈ℓ2, ν2〉.

Remark. The following property of time additivity holds.

∀ t1, t2 ∈ Time :
t1−→ ◦

t2−→ =
t1+t2−−−→

Time-abstract Transition System
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Definition 4.19. [Time-abstract transition system]

Let A be a timed automaton.

The time-abstract transition system U(A) is obtained
from T (A) (Def. 4.4) by taking

U(A) = (Conf (A), B?!, {
α

=⇒| α ∈ B?!}, Cini)

where
α

=⇒⊆ Conf (A)× Conf (A)

is defined as follows: Let 〈ℓ, ν〉, 〈ℓ′, ν′〉 ∈ Conf (A) be configurations of
A and α ∈ B?! an action. Then

〈ℓ, ν〉
α

=⇒ 〈ℓ′, ν′〉

if and only if there exists t ∈ Time such that

〈ℓ, ν〉
t
−→ ◦

α
−→ 〈ℓ′, ν′〉.
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〈ℓ, ν〉
α

=⇒ 〈ℓ′, ν′〉 iff ∃ t ∈ Time • 〈ℓ, ν〉
t
−→ ◦

α
−→ 〈ℓ′, ν′〉

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• 〈light, x = 0〉
press?
=⇒ 〈off, x = 27〉 YES, with t = 27 we have 〈l, 0〉

27
−−→◦

press?
−−−−→

︷ ︸︸ ︷

27
−−→ 〈l, 27〉

press?
−−−−→〈o, 27〉

• 〈off, x = 4〉
press?
=⇒ 〈light, x = 0〉 YES, any t ∈ R

+
0

works

• 〈off, x = 4〉
press?
=⇒ 〈light, x = 1〉 NO, 〈o, 4〉

t
−→ ◦

press?
−−−−→ 〈l, t′〉 implies t′ = 0

• 〈off, x = 0〉
press?
=⇒ 〈light, x = 5〉 NO, no α s.t. 〈o, 5〉

α
−→ 〈o, 5〉

• 〈off, x = 0〉
press?
=⇒ 〈bright, x = 5〉 NO, needs two actions

• 〈light, x = 1〉
press?
=⇒ 〈bright, x = 1〉 YES, with t = 0

Location Reachability is preserved in U(A)
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Lemma 4.20. For all locations ℓ of a given timed automaton A the fol-
lowing holds:

ℓ is (
λ
−→-)reachable in T (A) if and only if ℓ is (

α
=⇒-)reachable in U(A).

Proof:

• “⇐=”: easy

• “ =⇒ ”: ℓ is reachable in T (A)

iff 〈ℓ0, ν0〉
t01−−→ 〈ℓ01 , ν01 〉

t02−−→ 〈ℓ02 , ν02 〉
t03−−→ · · ·

t0n0−−−→〈ℓ0n0
, ν0n0

〉
α1−−→ 〈ℓ1, ν1〉

t11−−→ 〈ℓ11 , ν11 〉
t12−−→ · · ·

α2−−→ 〈ℓ2, ν2〉
...
tm1−−−→ 〈ℓm1 , νm1 〉

tm2−−−→ · · ·
αm+1
−−−−→ 〈ℓ, νm+1〉
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Lemma 4.20. For all locations ℓ of a given timed automaton A the fol-
lowing holds:

ℓ is (
λ
−→-)reachable in T (A) if and only if ℓ is (

α
=⇒-)reachable in U(A).

Proof:

• “⇐=”: easy

• “ =⇒ ”: ℓ is reachable in T (A)

iff 〈ℓ0, ν0〉

t1 :=
∑n0

i=1
t0i

︷ ︸︸ ︷

t01−−→ 〈ℓ01 , ν01 〉
t02−−→ 〈ℓ02 , ν02 〉

t03−−→ · · ·
t0n0−−−→〈ℓ0n0

, ν0n0
〉

α1−−→ 〈ℓ1, ν1〉

n0 ∈ N0 , i.e.
sequence may be

empty

t11−−→ 〈ℓ11 , ν11 〉
t12−−→ · · ·

α2−−→ 〈ℓ2, ν2〉
...
tm1−−−→ 〈ℓm1 , νm1 〉

tm2−−−→ · · ·
αm+1
−−−−→ 〈ℓ, νm+1〉

implies 〈ℓ0, ν0〉
α1=⇒ 〈ℓ1, ν1〉

α2=⇒ . . .
αm+1

=⇒ 〈ℓ, νm+1〉

by
t2−→ ◦

α2−−→

Decidability of The Location Reachability Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition system
U(A) — abstracts from uncountably many
delay transitions, still infinite-state.

✔ Lemma 4.20: location reachability
of A is preserved in U(A).

✘ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✘ Lemma 4.32: location reachability
of U(A) is preserved in R(A).

✘ Lemma 4.28: R(A) is finite.
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

U(A):

· · ·
press
=⇒ 〈light, x = 0〉

〈bright, x = 0〉
press
=⇒ · · ·

. . .
〈bright, x = 0.1〉

press
=⇒ · · ·

. . .
〈bright, x = 0.2〉

press
=⇒ · · ·

. . .
〈bright, x = 1.0〉

press
=⇒ · · ·

. . .
〈bright, x = 3.0〉

press
=⇒ · · ·

. . .
〈bright, x = 3.001〉

press
=⇒ · · ·

. . .

〈off, x = 0〉
press
=⇒ · · ·

. . .
〈off, x = 2.9〉

press
=⇒ · · ·

. . .
〈off, x = 3.0〉

press
=⇒ · · ·

. . .
〈off, x = 3.001〉

press
=⇒ · · ·

. . .
〈off, x = 127.1415〉

press
=⇒ · · ·

. . .

pr
es

s
=⇒

pre
ss

=⇒
press

=⇒
press

=⇒
press

=⇒

press
=⇒

press

=⇒

Distinguishing Clock Valuations: One Clock
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• Assume A with only a single clock, i.e. X = {x} (recall: C(A) ⊂ N).

• A could detect, for a given ν , x ≤ 3 ∧ x ≥ 3
whether ν(x) ∈ {0, . . . , cx}.

• A cannot distinguish ν1 and ν2 x > 1 ∧ x < 2
if νi(x) ∈ (k, k + 1), i = 1, 2,
and k ∈ {0, . . . , cx − 1}.

• A cannot distinguish ν1 and ν2 x > cx
if νi(x) > cx, i = 1, 2.

• If cx ≥ 1, there are (2cx + 2) equivalence classes:

{{0}, (0, 1), {1}, (1, 2), . . . , {cx}, (cx,∞)}

If ν1(x) and ν2(x) are in the same equivalence class,

then ν1 and ν2 are indistiguishable by A.
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• X = {x, y}, cx = 1, cy = 1.

0

1

0 1
x

y

Helper: Floor and Fraction
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• Recall:

Each q ∈ R+
0 can be split into

• floor ⌊q⌋ ∈ N0 and

• fraction frac(q) ∈ [0, 1)

such that
q = ⌊q⌋+ frac(q).
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Definition. Let X be a set of clocks, cx ∈ N0 for each clock x ∈ X , and
ν1, ν2 clock valuations of X .

We set ν1 ∼= ν2 if and only if the following four conditions are satisfied:

(1) For all x ∈ X , ⌊ν1(x)⌋ = ⌊ν2(x)⌋ or both ν1(x) > cx and ν2(x) > cx.

(2) For all x ∈ X with ν1(x) ≤ cx,

frac(ν1(x)) = 0 if and only if frac(ν2(x)) = 0.

(3) For all x, y ∈ X ,

⌊ν1(x)− ν1(y)⌋ = ⌊ν2(x)− ν2(y)⌋

or both |ν1(x)− ν1(y)| > c and |ν2(x)− ν2(y)| > c.

(4) For all x, y ∈ X with −c ≤ ν1(x)− ν1(y) ≤ c,

frac(ν1(x)− ν1(y)) = 0 if and only if frac(ν2(x)− ν2(y)) = 0.

Where c = max{cx, cy}.

Example: Regions
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(1) ∀x ∈ X • ⌊ν1(x)⌋ = ⌊ν2(x)⌋ ∨ (ν1(x) > cx ∧ ν2(x) > cx)

(2) ∀x ∈ X • ν1(x) ≤ cx =⇒ (frac(ν1(x)) = 0 ⇐⇒ frac(ν2(x)) = 0)

(3) ∀x, y ∈ X • ⌊ν1(x)− ν1(y)⌋ = ⌊ν2(x)− ν2(y)⌋
∨ (|ν1(x)− ν1(y)| > c ∧ |ν2(x)− ν2(y)| > c)

(4) ∀x, y ∈ X • −c ≤ ν1(x)− ν1(y) ≤ c

=⇒ (frac(ν1(x)− ν1(y)) = 0 ⇐⇒ frac(ν2(x)− ν2(y)) = 0)

0

1

0 1
x

y

•

•
•

ν1

ν2
ν3

ν1 ∼= ν2 because

• ⌊ν1(x)⌋ = ⌊1⌋ = 1 = ⌊1⌋ = ⌊ν2(x)⌋

⌊ν1(y)⌋ = ⌊0.8⌋ = 0 = ⌊0.4⌋ = ⌊ν2(y)⌋

• frac(ν1(x)) = 0 = frac(ν2(x))

frac(ν1(y)) = frac(0.8) = 0.8 6= 0

frac(ν2(y)) = frac(0.4) = 0.4 6= 0

• ⌊ν1(x)− ν1(y)⌋ = ⌊1− 0.8⌋ = 0

= ⌊1− 0.4⌋ = ⌊ν2(x)− ν2(y)⌋

• . . .
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(1) ∀x ∈ X • ⌊ν1(x)⌋ = ⌊ν2(x)⌋ ∨ (ν1(x) > cx ∧ ν2(x) > cx)

(2) ∀x ∈ X • ν1(x) ≤ cx =⇒ (frac(ν1(x)) = 0 ⇐⇒ frac(ν2(x)) = 0)

(3) ∀x, y ∈ X • ⌊ν1(x)− ν1(y)⌋ = ⌊ν2(x)− ν2(y)⌋
∨ (|ν1(x)− ν1(y)| > c ∧ |ν2(x)− ν2(y)| > c)

(4) ∀x, y ∈ X • −c ≤ ν1(x)− ν1(y) ≤ c

=⇒ (frac(ν1(x)− ν1(y)) = 0 ⇐⇒ frac(ν2(x)− ν2(y)) = 0)

0

1

0 1
x

y

•

•
•

ν1

ν2
ν3

ν1 ∼= ν2 because

• ⌊ν1(x)⌋ = ⌊1⌋ = 1 = ⌊1⌋ = ⌊ν2(x)⌋

⌊ν1(y)⌋ = ⌊0.8⌋ = 0 = ⌊0.4⌋ = ⌊ν2(y)⌋

• frac(ν1(x)) = 0 = frac(ν2(x))

frac(ν1(y)) = frac(0.8) = 0.8 6= 0

frac(ν2(y)) = frac(0.4) = 0.4 6= 0

• ⌊ν1(x)− ν1(y)⌋ = ⌊1− 0.8⌋ = 0

= ⌊1− 0.4⌋ = ⌊ν2(x)− ν2(y)⌋

• . . .

ν2 6∼= ν3 because

• ⌊ν2(x)⌋ = ⌊1⌋ = 1
⌊ν3(x)⌋ = ⌊0.7⌋ = 0

Regions
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Proposition. ∼= is an equivalence relation.

Definition 4.27.
For a given valuation ν we denote by [ν] the equivalence class of ν .

We call the equivalence classes of ∼= regions.
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Definition 4.29. [Region Automaton] The region automaton R(A) of the
timed automaton A is the labelled transition system

R(A) = ( Conf (R(A)), B?!, {
α
−→R(A)| α ∈ B?!}, Cini )

where

• Conf (R(A)) = {〈ℓ, [ν]〉 | ℓ ∈ L, ν : X → Time, ν |= I(ℓ)},

• for each α ∈ B?!,

〈ℓ, [ν]〉
α
−→R(A) 〈ℓ

′, [ν′]〉 if and only if 〈ℓ, ν〉
α

=⇒ 〈ℓ′, ν′〉

in U(A), and

• Cini = {〈ℓini , [νini ]〉} ∩ Conf (R(A)) with νini(X) = {0}.

Proposition. The transition relation of R(A) is well-defined, that is, inde-
pendent of the choice of the representative ν of a region [ν].

Example: Region Automaton
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

U(A):

· · ·
press
=⇒ 〈light, [x = 0]〉

〈bright, [x = 0]〉
press
=⇒ · · ·

〈bright, [x = 0.1]〉
press
=⇒ · · ·

〈bright, [x = 1.0]〉
press
=⇒ · · ·

. . .
〈bright, [x = 3.0]〉

press
=⇒ · · ·

〈bright, [x = 3.001]〉
press
=⇒ · · ·

〈off, [x = 0]〉
press
=⇒ · · ·

. . .
〈off, [x = 2.9]〉

press
=⇒ · · ·

〈off, [x = 3.0]〉
press
=⇒ · · ·

〈off, [x = 3.001]〉
press
=⇒ · · ·

pre
ss

=⇒

press

=⇒
press

=⇒
press

=⇒

press
=⇒
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Remark 4.30. A configuration 〈ℓ, [ν]〉 is reachable in R(A)

if and only if all 〈ℓ, ν′〉 with ν′ ∈ [ν] are reachable.

In other words: it is possible to enter the configuration 〈ℓ, ν′〉

with an action transition (possibly some delay before).

The clock values reachable by staying / letting time pass in ℓ are

not explicitly represented by the regions of R(A).

Decidability of The Location Reachability Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition system
U(A) — abstracts from uncountably many
delay transitions, still infinite-state.

✔ Lemma 4.20: location reachability
of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✘ Lemma 4.32: location reachability
of U(A) is preserved in R(A).

✘ Lemma 4.28: R(A) is finite.
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Lemma 4.32. [Correctness]
For all locations ℓ of a given timed automaton A the following holds:

ℓ is reachable in U(A) if and only if ℓ is reachable in R(A).

For the Proof:

Definition 4.21. [Bisimulation] An equivalence relation ∼ on valuations is
a (strong) bisimulation if and only if, whenever

ν1 ∼ ν2 and 〈ℓ, ν1〉
α

=⇒ 〈ℓ′, ν′1〉

then there exists ν′2 with ν′1 ∼ ν′2 and 〈ℓ, ν2〉
α

=⇒ 〈ℓ′, ν′2〉.

Lemma 4.26. [Bisimulation] ∼= is a strong bisimulation.
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition system
U(A) — abstracts from uncountably many
delay transitions, still infinite-state.

✔ Lemma 4.20: location reachability
of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✔ Lemma 4.32: location reachability
of U(A) is preserved in R(A).

✘ Lemma 4.28: R(A) is finite.
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Lemma 4.28. Let X be a set of clocks, cx ∈ N0 the maximal constant for
each x ∈ X , and c = max{cx | x ∈ X}. Then

(2c+ 2)|X| · (4c+ 3)
1
2
|X|·(|X|−1)

is an upper bound on the number of regions.

Proof: Olderog and Dierks (2008)
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Lemma 4.28. Let X be a set of clocks, cx ∈ N0 the maximal constant for
each x ∈ X , and c = max{cx | x ∈ X}. Then

(2c+ 2)|X| · (4c+ 3)
1
2
|X|·(|X|−1)

is an upper bound on the number of regions.

Proof: Olderog and Dierks (2008)

• Lemma 4.28 in particular tells us that each timed automaton (in our definition)
has finitely many regions.

• Note: the upper bound is a worst case / upper bound, not an exact number.
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition system
U(A) — abstracts from uncountably many
delay transitions, still infinite-state.

✔ Lemma 4.20: location reachability
of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

✔ Lemma 4.32: location reachability
of U(A) is preserved in R(A).

✔ Lemma 4.28: R(A) is finite.

Putting It All Together
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Let A = (L,B,X, I, E, ℓini) be a timed automaton and ℓ ∈ L a location.

• R(A) can be constructed effectively.

• There are finitely many locations in L (by definition).

• There are finitely many regions by Lemma 4.28.

• So Conf (R(A)) is finite (by construction).

• It is decidable whether there exists a sequence

〈ℓini , [νini ]〉
α
−→R(A) 〈ℓ1, [ν1]〉

α
−→R(A) . . .

α
−→R(A) 〈ℓn, [νn]〉

such that ℓn = ℓ (reachability in graphs).

Thus we have just shown:

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.
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• Given: Timed automaton A, one of its locations ℓ, and a clock constraint ϕ.

• Question: Is a configuration 〈ℓ, ν〉 reachable
where ν |= ϕ, i.e. is there a transition sequence of the form

〈ℓini , νini〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

λn−−→ 〈ℓn, νn〉 = 〈ℓ, ν〉

in the labelled transition system T (A) with ν |= ϕ?

• Note: we just observed that R(A) loses some information about the clock
valuations that are possible in / from a region.

Theorem 4.34.
The constraint reachability problem for timed automata is decidable.

The Delay Operation
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• Let [ν] be a clock region.

• We set delay [ν] := {ν′ + t | ν′ ∼= ν and t ∈ Time}.

0

1

0 1
x

y

• Note: delay [ν] can be represented as a finite union of regions.

For example, with our two-clock example we have

delay [x = y = 0] = [x = y = 0] ∪ [0 < x = y < 1] ∪ [x = y = 1] ∪ [1 < x = y]
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• Location Reachable Problem:
is location ℓ reachable in A?

• Decidability proof:

• normalise constants,

• construct the Time Abstract Transition System

• “get rid of” delay transitions,

• still uncountably many configurations

• collapse equivalent clock valuations into regions

• obtain finitely many (abstract) configurations

• construct the Region Automaton

• it is finite,

• and preserves location reachability.

• Thus: there are chances to get automatic verification for TA.

• Result can easily be lifted to constraint reachability.
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