Real-Time Systems

Lecture 14: Regions and Zones

2017-12-21

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- 14 - 2017-12-21 - Sco

- Motivation:
 Sometimes, regions seem too fine-grained
- Definition
- **Examples**: Zone or Not Zone
- Zone-based Reachability Analysis
- The basic algorithm.
- Building blocks:
- -• Post-operator,
- subsumption check
- A symbolic Post-operator
- Difference-Bounds-Matrices (DBMs)
- Discussion: Zones vs. Regions

Zones

(Presentation following Fränzle (2007))

3/24

Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then

$$(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}$$

is an **upper bound** on the **number of regions**.

• In the desk lamp controller,

- 2017-12-21 - :

14 -

many regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that it's actually only important whether $\nu(x) \in [0,3]$ or $\nu(x) \in (3,\infty)$.

So: it seems like there are even **equivalence classes** of **undistinguishable regions** in certain timed automata.

Wanted: Zones instead of Regions

- In $\mathcal{R}(\mathcal{L})$ we have transitions:
 - $\langle \text{light}, \{0\} \rangle \xrightarrow{press?} \langle \text{bright}, \{0\} \rangle, \quad \langle \text{light}, \{0\} \rangle \xrightarrow{press?} \langle \text{bright}, (0, 1) \rangle,$ • ..., • $\langle \text{light}, \{0\} \rangle \xrightarrow{press?} \langle \text{bright}, (2, 3) \rangle, \quad \langle \text{light}, \{0\} \rangle \xrightarrow{press?} \langle \text{bright}, \{3\} \rangle$
- Which seems to be a complicated way to write just:

• Can't we **constructively** abstract \mathcal{L} to:

Content

2017-12-21-

- Motivation: Sometimes, regions seem too fine-grained
- Definition
- └ Examples: Zone or Not Zone
- Zone-based Reachability Analysis
- —• The basic algorithm.
- -(• Building blocks:
- Post-operator,
- └ subsumption check
- A symbolic Post-operator
- Difference-Bounds-Matrices (DBMs)
- Discussion: Zones vs. Regions

What is a Zone?

What is a Zone?

Definition. A (clock) zone is a set $z \subseteq (X \to \mathsf{Time})$ of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

 $\nu \in z$ if and only if $\nu \models \varphi$.

Example:

is a clock zone by

 $\varphi = (x \le 2) \land (x > 1) \land (y \ge 1) \land (y < 2) \land (x - y \ge 0)$

- Note: Each clock constraint φ is a symbolic representation of a zone.
- But: There's no one-on-one correspondence between clock constraints and zones. The zone $z = \emptyset$ corresponds to $(x > 1 \land x < 1)$, $(x > 2 \land x < 2)$, ...

Content

2017-12-21-

- Motivation: Sometimes, regions seem too fine-grained
- Definition
- Examples: Zone or Not Zone
- Zone-based Reachability Analysis
- -(• The basic algorithm.
- Building blocks:
- **Post**-operator,
- ubsumption check
- A symbolic Post-operator
- Difference-Bounds-Matrices (DBMs)
- Discussion: Zones vs. Regions

Zone-based Reachability Analysis

such that $\operatorname{Post}_e(\langle \ell, z \rangle)$ yields the configuration $\langle \ell', z' \rangle$ such that

- zone z' denotes exactly those clock valuations ν'
 - which are reachable from a configuration $\langle \ell, \nu \rangle$, $\nu \in z$,
 - by taking edge $e = (\ell, \alpha, \varphi, Y, \ell') \in E$.

Then $\ell \in L$ is reachable in \mathcal{A} if and only if

 $\operatorname{Post}_{e_n}(\dots(\operatorname{Post}_{e_1}(\langle \ell_{\operatorname{ini}}, z_{\operatorname{ini}} \rangle) \dots)) = \langle \ell, z \rangle$ for some $e_1, \dots, e_n \in E$ and some z.

Set R := {⟨ℓ_{ini}, z_{ini}⟩} ⊂ L × Zones
Repeat

pick
a pair ⟨ℓ, z⟩ from R and
an edge e ∈ E with source ℓ
such that Post_e(⟨ℓ, z⟩) is not already subsumed by R
add Post_e(⟨ℓ, z⟩) to R
until no more such ⟨ℓ, z⟩ ∈ R and e ∈ E are found.

Missing:

- Algorithm to effectively compute $\text{Post}_e(\langle \ell, z \rangle)$ for a given configuration $\langle \ell, z \rangle \in L \times \text{Zones}$ and an edge $e \in E$.
- Decision procedure for whether configuration $\langle\ell',z'\rangle$ is subsumed by a given subset of $L\times {\rm Zones.}$

Note: The algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants c_x into account (not in lecture).

12/24

What is a Good "Post"?

• If z is given by a constraint $\varphi \in \Phi(X)$, (write: $z = \llbracket \varphi \rrbracket$) then the zone component z' of $\text{Post}_e(\ell, z) = \langle \ell', z' \rangle$ should also be a constraint from $\Phi(X)$.

(We want to manipulate constraints, not those unhandy sets of clock valuations.)

Good news: the following operations can be carried out by manipulating φ .

(1) The **elapse time** operation:

$$\uparrow : \operatorname{Zones} \to \operatorname{Zones} \\ z \mapsto \{\nu + t \mid t \in \operatorname{Time}\}$$

can be carried out symbolically as follows:

- Let $z = \llbracket \varphi \rrbracket$.
- Obtain φ' by removing all upper bounds $x \leq c$, x < c, from φ and adding diagonals.
- Then $\llbracket \varphi' \rrbracket = z \uparrow$.

This procedure defines $\uparrow: \Phi(X) \to \Phi(X)$ (a function on clock constraints!), such that $[\![\varphi \uparrow]\!] = z \uparrow \text{if } z = [\![\varphi]\!]$.

Good News Cont'd

Good news: the following operations can be carried out by manipulating φ .

- (1) elapse time: $\varphi \uparrow$ with $\llbracket \varphi \uparrow \rrbracket = z \uparrow$ if $z = \llbracket \varphi \rrbracket$.
- (2) zone intersection: if $z_1 = \llbracket \varphi_1 \rrbracket$ and $z_2 = \llbracket \varphi_2 \rrbracket$, then $\llbracket \varphi_1 \land \varphi_2 \rrbracket = z_1 \cap z_2$.
- (3) clock reset:

$$:= 0] : \operatorname{Zones} \times X \to \operatorname{Zones} \\ (z, x) \mapsto \{\nu[x := 0] \mid \nu \in z\}$$

can be carried out symbolically by setting

·[·

$$\begin{array}{ccc} \cdot \left[\cdot := 0 \right] & : & \Phi \times X \to \Phi \\ & (\varphi, x) \mapsto (x = 0) \land (\exists x. \varphi) \end{array} \xrightarrow{ \begin{array}{c} \times = \circ \land & \pi = g \land x = 2 \\ & \kappa = \circ \land & (\exists \overset{\sim}{\times} \cdot \overset{\sim}{\chi} = g \land \overset{\sim}{\chi} = 2 \end{array} \right)$$

using clock hiding (existential quantification);

$$\llbracket \exists x. \varphi \rrbracket = \{ \nu \mid \text{there is } t \in \text{Time such that } \nu[x := t] \models \varphi \}$$

1	Λ	<i>(</i>)	
1	4/	′ Z	4

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \llbracket \varphi_0 \rrbracket \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

$$\operatorname{Post}_{e}(\langle \ell, z \rangle) = \langle \ell', \llbracket \varphi_{5} \rrbracket \rangle \qquad (symbolical: \operatorname{Post}_{e}(\langle \ell, \varphi_{0} \rangle) = \langle \ell', \varphi_{5} \rangle)$$

where

• $\varphi_1 = \varphi_0 \uparrow$

let time elapse starting from φ_0 :

 φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of ℓ : φ_2 represents the "good" valuations reachable from φ_1 .

• $\varphi_3 = \varphi_2 \wedge \varphi$

intersect with guard: in φ_3 are the reachable "good" valuations where e is enabled.

• $\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$

reset clocks: φ_4 are all possible outcomes of taking *e* from φ_3 .

•
$$\varphi_5 = \varphi_4 \wedge I(\ell')$$

- 14 - 2017-12-21 - Szonen

intersect with invariant of ℓ' : φ_5 are the "good" outcomes of taking e from φ_3 .

let time elapse. intersect with invariant of ℓ	• $\varphi_1 = \varphi_0 \uparrow$ • $\varphi_2 = \varphi_1 \wedge I(\ell)$
intersect with guard	• $\varphi_3 = \varphi_2 \wedge \varphi$
$[0] \dots [y_n := 0]$ reset clocks	• $\varphi_4 = \varphi_3[y_1 := 0]$

• $\varphi_5 = \varphi_4 \wedge I(\ell')$ intersect with invariant of ℓ'

-14 - 2017-12-21 - Szonereach

- 14 - 2017-12-21 - Szonereach -

16/24

 $x \leq 2$

y := 0

x >

 ℓ

 $\begin{array}{l} \varphi_0 = 1 \leq y \leq 2 \\ \wedge \, 1 \leq x \leq 3 \wedge x \geq y \end{array}$

- 14 - 2017-12-21 - Szonereach -

 $x \leq 2$

y := 0

x > 1

16/24

 ℓ

-14 - 2017-12-21 - Szonereach

- 14 - 2017-12-21 - Szonen

14-

14 - 2017-12-21 - Szor

0 -

14-

/24

16/24

 ℓ'

Content

2017-12-21-

14 - 2017-12-21 - Sdbm

Motivation: Sometimes, regions seem too fine-grained
Definition

Examples: Zone or Not Zone

Zone-based Reachability Analysis

The basic algorithm.
Building blocks:

Post-operator,
subsumption check
A symbolic Post-operator

Difference-Bounds-Matrices (DBMs)
Discussion: Zones vs. Regions

17/24

Difference Bound Matrices

disjoint under

• Given a finite set of clocks *X*, a **DBM** over *X* is a mapping

$$M: (X \stackrel{.}{\cup} \{x_0\}) \times (X \stackrel{.}{\cup} \{x_0\}) \rightarrow (\{<,\le\} \times \mathbb{Z}) \cup \{(<,\infty)\}$$

• $M(x,y) = (\sim, c)$ encodes the conjunct $x - y \sim c$ (x and y can be x_0).

• Given a finite set of clocks X, a DBM over X is a mapping

 $M: (X \stackrel{.}{\cup} \{x_0\}) \times (X \stackrel{.}{\cup} \{x_0\}) \rightarrow (\{<,\le\} \times \mathbb{Z}) \cup \{(<,\infty)\}$

- M(x,y) = (∼, c) encodes the conjunct x − y ∼ c (x and y can be x₀).
- If M and N are DBMs encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M \uparrow, M \land N, M[x := 0]$ such that
 - all three are again DBM,
 - $M \uparrow$ encodes $\varphi_1 \uparrow$,
 - $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
 - M[x := 0] encodes $\varphi_1[x := 0]$.

And there is a canonical form of DBM.

(Canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm)).

• Thus: we can define our 'Post' on DBM, and let our algorithm run on DBM.

18/24

Content

2017-12-21-

-14 - 2017-12-21 -

- Motivation: Sometimes, regions seem too fine-grained
- Definition
- └-(● Examples: Zone or Not Zone
- Zone-based Reachability Analysis
- The basic algorithm.
- Building blocks:
 - **Post**-operator,
 - ubsumption check
- A symbolic Post-operator
- Difference-Bounds-Matrices (DBMs)
- Discussion: Zones vs. Regions

Pros and cons

• Zone-based

reachability analysis usually is explicit wrt. discrete locations:

- maintains a list of location/zone pairs (or location/DBM pairs)
- confined wrt. size of discrete state space
- avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks

• Region-based

analysis provides a finite-state abstraction, amenable to finite-state symbolic model-checking

- less dependent on size of discrete state space
- exponential in number of clocks

20/24

Content

2017-12-21-

2017-12-21-

- Motivation: Sometimes, regions seem too fine-grained
- Definition
- **Examples**: Zone or Not Zone
- Zone-based Reachability Analysis
- It the basic algorithm.
- Building blocks:
- **Post**-operator,
- ubsumption check
- • A symbolic Post-operator
- Difference-Bounds-Matrices (DBMs)
- Discussion: Zones vs. Regions

- A zone is a set of clock valuations which can be characterised by a clock constraint.
- Each zone is a union of regions, not every union of regions is a zone.
- There is an <u>effectively computable</u> Post-operation for TA edges on zones.
 - based on: time elapse, intersection, reset
 - so there is a fully symbolic decision procedure for location reachability (if we ensure termination by widening)
 - even more convenient: using DBMs
 - since DBMs have a normal form

-14 - 2017-12-21 - Sttwyti

2017-12-21

 For a given model, sometimes the region-based / sometimes the zone-based approach is faster.
 Not so many region-based tools are "on the market" these days.

22/24

References

References

Fränzle, M. (2007). Formale methoden eingebetteter systeme. Lecture, Summer Semester 2007, Carl-von-Ossietzky Universität Oldenburg.

Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.