
–
15

–
2

0
18

-0
1-

0
9

–
m

ai
n

–

Real-Time Systems

Lecture 15: Extended Timed Automata

2018-01-09

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

–
15

–
2

0
18

-0
1-

0
9

–
S

co
n

te
n

t
–

2/39

• Extended Timed Automata — Syntax

• Data Variables

• Urgent locations and channels

• Committed locations

• Extended Timed Automata — Semantics

• labelled transition system

• extended valuations, timeshift, modification

• examples for urgent / committed

• Extended vs. Pure Timed Automata

• The Reachability Problem
of Extended Timed Automata

• Uppaal Query Language

• Transition graph (!)

• By-the-way: satisfaction relation decidable.

Extended Timed Automata

–
15

–
2

0
18

-0
1-

0
9

–
m

ai
n

–

3/39

Example (Partly Already Seen in Uppaal Demo)

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

4/39

Templates: Extensions:

• Data Variables
(Expressions,
Constraints, Updates)

• Structuring

• Urgent/Committed
Locations,
Urgent Channels

• L: off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• U :

U

v := 0

v = 1

v = 0

y := 0
y < 2

press!

v := 1

press!

y > 3

press!

System:

L U

press? press!
x

y

v
chan press

Data-Variables

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

5/39

• When modelling controllers as timed automata,
it is sometimes desirable to have (local and shared) non-clock variables.

E.g. count number of open doors, or intermediate positions of gas valve.

Data-Variables

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

5/39

• When modelling controllers as timed automata,
it is sometimes desirable to have (local and shared) non-clock variables.

E.g. count number of open doors, or intermediate positions of gas valve.

• Adding variables with finite range (possibly grouped into finite arrays)
to any finite-state automata concept is straighforward:

• If we have control locations L0 = {ℓ1, . . . , ℓn},

• and want to model, e.g., the valve position as a variable v with domain D(v) = {0, 1, 2},

• then just use L = L0 ×D(v) as control locations,
i.e. encode the current value of v in locations, and consider updates of v in the edges.

L is still finite, so we still have a proper timed automaton.

• But: writing edges is tedious then.

• So: have variables as “first class citizens” and let compilers do the work.

• Interestingly, many case-studies in the literature live without non-clock variables:

The more abstract the model is, i.e., the fewer information it keeps track of (e.g. in
data variables), the easier the verification task.

Data Variables and Expressions

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

6/39

• Let (v, w ∈) V be a set of (integer) variables.

(ψint ∈) Ψ(V): integer expressions over V using function symbols +,−, . . .

(ϕint ∈) Φ(V): integer (or data) constraints over V ,

using integer expressions, predicate symbols =, <,≤, . . . , and logical connectives.

• Let (x, y ∈)X be a set of clocks.

(ϕ ∈) Φ(X,V): The set of (extended) guards is defined by the following grammar:

ϕ ::= ϕclk | ϕint | ϕ1 ∧ ϕ2

where ϕclk ∈ Φ(X) is a simple clock constraint (as defined before)
and ϕint ∈ Φ(V) an integer (or data) constraint.

Examples: Extended guard or not extended guard? Why?

(a) x < y ∧ v > 2, (b) x < y ∨ v > 2, (c) v < 1 ∨ v > 2, (d) x < v

Modification or Reset Operation

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

7/39

• New: a modification or reset (operation) is

x := 0, x ∈ X,

or
v := ψint , v ∈ V, ψint ∈ Ψ(V).

• ByR(X,V) we denote the set of all resets.

• By ~r we denote a finite list 〈r1, . . . , rn〉, n ∈ N0, of reset operations ri ∈ R(X,V);

〈〉 is the empty list.

• ByR(X,V)∗ we denote the set of all such lists of reset operations
(also called reset vector).

Examples: Modification or not? Why? (x, y clocks; v, w variables)

(a) x := y, (b) x := v, (c) v := x, (d) v := w, (e) v := 0

Structuring Facilities

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

8/39

global decl.: clocks, variables, channels, constants

A1 A2 A3

A4
A5

local

decl.

b!
c! c?

a!

d?

a?

d! b?

b? b?

broadcast chan b

chan c
chan a

chan d

• Global declarations of of clocks, data variables, channels, and constants.

• Binary and broadcast channels: chan c and broadcast chan b.

• Templates of timed automata.

• Instantiation of templates (instances are called process).

• System definition: list of processes.

Restricting Non-determinism

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

9/39

• Urgent locations — enforce local immediate progress.

U

• Committed locations — enforce atomic immediate progress.

C

• Urgent channels — enforce cooperative immediate progress.

urgent chan press;

Urgent Locations: Only an Abbreviation...

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

10/39

Replace

ℓ

urgent
with ℓ

ϕ ϕ ∧ z = 0

z := 0

z := 0

where z is a fresh clock:

• reset z on all in-going egdes,

• add z = 0 to invariant.

Question: How many fresh clocks do we need in the worst case for a network of N
extended timed automata?

Extended Timed Automata

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

sy
n

–

11/39

Definition 4.39. An extended timed automaton is a structure

Ae = (L,C,B, U,X, V, I, E, ℓini)

where L,B,X, I, ℓini are as in Definition 4.3,
except that location invariants in I are downward closed, and where

• C ⊆ L: committed locations,

• U ⊆ B: urgent channels,

• V : a set of data variables (with finite domain),

• E ⊆ L×B!? × Φ(X,V)×R(X,V)∗ × L

is a set of directed edges such that

(ℓ, α, ϕ,~r, ℓ′) ∈ E ∧ chan(α) ∈ U =⇒ ϕ = true.

Edges (ℓ, α, ϕ,~r, ℓ′) from location ℓ to ℓ′ are
labelled with an action α, a guard ϕ, and a list ~r of reset operations.

Content

–
15

–
2

0
18

-0
1-

0
9

–
S

co
n

te
n

t
–

12/39

• Extended Timed Automata — Syntax

• Data Variables

• Urgent locations and channels

• Committed locations

• Extended Timed Automata — Semantics

• labelled transition system

• extended valuations, timeshift, modification

• examples for urgent / committed

• Extended vs. Pure Timed Automata

• The Reachability Problem
of Extended Timed Automata

• Uppaal Query Language

• Transition graph (!)

• By-the-way: satisfaction relation decidable.

Operational Semantics of Networks

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

se
m

–

13/39

Definition 4.40. Let

Ae,i = (Li, Ci, Bi, Ui, Xi, Vi, Ii, Ei, ℓini,i), 1 ≤ i ≤ n,

be extended timed automata with pairwise disjoint sets of clocks Xi.

The operational semantics of N = C(Ae,1, . . . ,Ae,n) (closed!)
is the labelled transition system

Te(C(Ae,1, . . . ,Ae,n)) = T (N) =

(Conf ,Time ∪ {τ}, {
λ
−→| λ ∈ Time ∪ {τ}}, Cini)

where

• X =
⋃n

i=1
Xi and V =

⋃n

i=1
Vi,

• Conf = {〈~ℓ, ν〉 | ℓi ∈ Li, ν : X ∪ V → Time, ν |=
∧n

k=1
Ik(ℓk)},

• Cini = {〈~ℓini , νini〉} ∩ Conf ,

The transition relations consists of transitions of the following three types.

Helpers: Extended Valuations and Timeshift

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

se
m

–

14/39

• Now: ν : X ∪ V → Time ∪ D(V)

• Canonically extends to ν : Ψ(V) → D (valuation of expression).

• “|=” extends canonically to expressions from Φ(X,V).

• Extended timeshift ν + t, t ∈ Time, applies to clocks only:

• (ν + t)(x) := ν(x) + t, x ∈ X ,

• (ν + t)(v) := ν(v), v ∈ V .

• Effect of modification r ∈ R(X,V) on ν , denoted by ν[r]:

ν[x := 0](a) :=

{

0, if a = x,

ν(a), otherwise

ν[v := ψint](a) :=

{

ν(ψint), if a = v,

ν(a), otherwise

• We set ν[〈r1, . . . , rn〉] := ν[r1] . . . [rn] = (((ν[r1])[r2])[r3] . . .) [rn].

Operational Semantics of Networks: Internal Transitions

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

se
m

–

15/39

• An internal transition 〈~ℓ, ν〉
τ
−→ 〈~ℓ′, ν′〉 occurs if there is i ∈ {1, . . . , n} such that

• there is a τ-edge (ℓi, τ, ϕ, ~r, ℓ
′

i) ∈ Ei,

• ν |= ϕ,

• ~ℓ′ = ~ℓ[ℓi := ℓ′i],

• ν′ = ν[~r],

• ν′ |= Ii(ℓ
′

i),

• (♣) if ℓk ∈ Ck for some k ∈ {1, . . . , n} then ℓi ∈ Ci.

Operational Semantics of Networks: Synchronisation

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

se
m

–

16/39

• A synchronisation transition 〈~ℓ, ν〉
τ
−→ 〈~ℓ′, ν′〉 occurs if there are i, j ∈ {1, . . . , n}

with i 6= j such that

• there are edges (ℓi, b!, ϕi, ~ri, ℓ
′

i) ∈ Ei and (ℓj , b?, ϕj , ~rj , ℓ
′

j) ∈ Ej ,

• ν |= ϕi ∧ ϕj ,

• ~ℓ′ = ~ℓ[ℓi := ℓ′i][ℓj := ℓ′j],

• ν′ = ν[~ri][~rj],

• ν′ |= Ii(ℓ
′

i) ∧ Ij(ℓ
′

j),

• (♣) if ℓk ∈ Ck for some k ∈ {1, . . . , n} then ℓi ∈ Ci or ℓj ∈ Cj .

Operational Semantics of Networks: Delay Transitions

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

se
m

–

17/39

• A delay transition 〈~ℓ, ν〉
t
−→ 〈~ℓ, ν + t〉 occurs if

• ν + t |=
∧n

k=1
Ik(ℓk),

• (♣) there are no i, j ∈ {1, . . . , n} and b ∈ U

with (ℓi, b!, ϕi, ~ri, ℓ
′

i) ∈ Ei and (ℓj , b?, ϕj , ~rj , ℓ
′

j) ∈ Ej ,

• (♣) there is no i ∈ {1, . . . , n} such that ℓi ∈ Ci.

Restricting Non-determinism: Example

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

se
m

–

18/39

p0

p1

p2

P

x := 0

b?

q0

q1

q2 q3

Q

y := 0, v := 1

b!, v := 2 v := 3

r0

r1

R

w := v

Property 1 Property 2 Property 3

w can become 1 y ≤ 0 holds (x ≥ y =⇒ y ≤ 0)
when Q is in q1 holds when in p1 and q1

N := P‖Q‖R ✔ ✘ ✘

N , q1 urgent

N , q1 committed

N , b urgent

Content

–
15

–
2

0
18

-0
1-

0
9

–
S

co
n

te
n

t
–

19/39

• Extended Timed Automata — Syntax

• Data Variables

• Urgent locations and channels

• Committed locations

• Extended Timed Automata — Semantics

• labelled transition system

• extended valuations, timeshift, modification

• examples for urgent / committed

• Extended vs. Pure Timed Automata

• The Reachability Problem
of Extended Timed Automata

• Uppaal Query Language

• Transition graph (!)

• By-the-way: satisfaction relation decidable.

Extended vs. Pure Timed Automata

–
15

–
2

0
18

-0
1-

0
9

–
m

ai
n

–

20/39

Extended vs. Pure Timed Automata

–
15

–
2

0
18

-0
1-

0
9

–
S

e
p

u
re

l–

21/39

Ae = (L,C,B, U,X, V, I, E, ℓini)

(ℓ, α, ϕ,~r, ℓ′) ∈ L×B!? × Φ(X,V)×R(X,V)∗ × L

vs.

A = (L,B,X, I, E, ℓini)

(ℓ, α, ϕ, Y, ℓ′) ∈ E ⊆ L×B?! × Φ(X)× 2X × L

• Ae is in fact (or specialises to) a pure timed automaton if

• C = ∅,

• U = ∅,

• V = ∅,

• for each ~r = 〈r1, . . . , rn〉, every ri is of the form x := 0 with x ∈ X .

• I(ℓ), ϕ ∈ Φ(X) is then a consequence of V = ∅.

Operational Semantics of Extended TA

–
15

–
2

0
18

-0
1-

0
9

–
S

e
p

u
re

l–

22/39

Theorem 4.41. If A1, . . . ,An specialise to pure timed automata,
then the operational semantics of

C(A1, . . . ,An)

and
chan b1, . . . , bm • (A1 ‖ . . . ‖ An),

where {b1, . . . , bm} =
⋃n

i=1
Bi, coincide, i.e.

Te(C(A1, . . . ,An)) = T (chan b1, . . . , bm • (A1 ‖ . . . ‖ An)).

Content

–
15

–
2

0
18

-0
1-

0
9

–
S

co
n

te
n

t
–

23/39

• Extended Timed Automata — Syntax

• Data Variables

• Urgent locations and channels

• Committed locations

• Extended Timed Automata — Semantics

• labelled transition system

• extended valuations, timeshift, modification

• examples for urgent / committed

• Extended vs. Pure Timed Automata

• The Reachability Problem
of Extended Timed Automata

• Uppaal Query Language

• Transition graph (!)

• By-the-way: satisfaction relation decidable.

Reachability Problems for Extended Timed Automata

–
15

–
2

0
18

-0
1-

0
9

–
m

ai
n

–

24/39

Recall

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

d
e

c
–

25/39

Theorem 4.33. [Location Reachability]

The location reachability problem for pure timed automata is decidable.

Theorem 4.34. [Constraint Reachability]

Constraint reachability is decidable for pure timed automata.

• And what about tea Ŵ extended timed automata?

What About Extended Timed Automata?

–
15

–
2

0
18

-0
1-

0
9

–
S

e
ta

d
e

c
–

26/39

Extended Timed Automata add the following features:

• Data-Variables

• As long as the domains of all variables in V are finite,
adding data variables doesn’t harm decidability.

• If they’re infinite, we’ve got a problem (encode two-counter machine!).

• Structuring Facilities

• Don’t hurt — they’re merely abbreviations.

• Restricting Non-determinism

• Restricting non-determinism doesn’t affect the configuration space Conf .

• Restricting non-determinism only removes certain transitions,
so it makes the reachable part of the region automaton even smaller
(not necessarily strictly smaller).

The Logic of Uppaal

–
15

–
2

0
18

-0
1-

0
9

–
m

ai
n

–

27/39

Uppaal Fragment of Timed Computation Tree Logic

–
15

–
2

0
18

-0
1-

0
9

–
S

u
tl

–

28/39

Consider N = C(A1, . . . ,An) over data variables V .

• basic formula:
atom ::= Ai.ℓ | ϕ

where ℓ ∈ Li is a location and ϕ a constraint overXi and V .

• configuration formulae:

term ::= atom | ¬term | term1 ∧ term2

• existential path formulae: (“exists finally”, “exists globally”)

e-formula ::= ∃♦ term | ∃� term

• universal path formulae: (“always finally”, “always globally”, “leads to”)

a-formula ::= ∀♦ term | ∀� term | term1 −→ term2

• formulae:
F ::= e-formula | a-formula

Tell Them What You’ve Told Them. . .

–
15

–
2

0
18

-0
1-

0
9

–
S

tt
w

y
tt

–

37/39

• For convenience, time automata can be extended by

• data variables, and

• urgent / committed locations.

• None of these extensions harm decidability,
as long as the data variables have a finite domain.

• Properties to be checked for a timed automata model
can be specified using the Uppaal Query Language,

• which is a tiny little fragment of Timed CTL (TCTL),

• and as such by far not as expressive as Duration Calculus.

• TCTL is another means to formalise requirements.

References

–
15

–
2

0
18

-0
1-

0
9

–
m

ai
n

–

38/39

References

–
15

–
2

0
18

-0
1-

0
9

–
m

ai
n

–

39/39

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

