Real-Time Systems

Lecture 15: Extended Timed Automata

2018-01-09

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- 15 - 2018-01-09 -

- Extended Timed Automata Syntax
- Data Variables
- **Urgent** locations and channels
- Committed locations

• Extended Timed Automata - Semantics

- labelled transition system
- • extended valuations, timeshift, modification
- examples for urgent / committed
- Extended vs. Pure Timed Automata
- The Reachability Problem of Extended Timed Automata
- Uppaal Query Language
- Transition graph (!)
- **By-the-way**: satisfaction relation **decidable**.

Extended Timed Automata

Example (Partly Already Seen in Uppaal Demo)

- 2018-01-09 -

3/39

• When modelling controllers as timed automata,

it is sometimes desirable to have (local and shared) non-clock variables.

E.g. count number of open doors, or intermediate positions of gas valve.

5/39

Data-Variables

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) non-clock variables.
 E.g. count number of open doors, or intermediate positions of gas valve.
- Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straighforward:
 - If we have control locations $L_0 = \{\ell_1, \ldots, \ell_n\}$,
 - and want to model, e.g., the valve position as a variable v with domain $\mathcal{D}(v) = \{0, 1, 2\}$,
 - then just use $L = L_0 \times \mathcal{D}(v)$ as control locations, i.e. encode the current value of v in locations, and consider updates of v in the edges.
 - L is still finite, so we still have a proper timed automaton.
- But: writing edges is tedious then.
- So: have variables as "first class citizens" and let compilers do the work.
- Interestingly, many case-studies in the literature live without non-clock variables: The more abstract the model is, i.e., the fewer information it keeps track of (e.g. in data variables), the easier the verification task.

• Let $(v, w \in) V$ be a set of (integer) variables.

 $(\psi_{int} \in) \Psi(V)$: integer expressions over V using function symbols +, -, ... $(\varphi_{int} \in) \Phi(V)$: integer (or data) constraints over V, using integer expressions, predicate symbols $=, <, \leq, ...$, and logical connectives.

 $(\Lambda, \gamma, \nu, \dots)$

• Let $(x, y \in) X$ be a set of clocks.

 $(\varphi \in) \Phi(X, V)$: The set of (extended) guards is defined by the following grammar:

 $\varphi ::= \varphi_{clk} \mid \varphi_{int} \mid \varphi_1 \land \varphi_2$

where $\varphi_{clk} \in \Phi(X)$ is a simple clock constraint (as defined before) and $\varphi_{int} \in \Phi(V)$ an integer (or data) constraint.

Modification or Reset Operation

• New: a modification or reset (operation) is

$$x := 0, \qquad x \in X,$$

or

$$v := \psi_{int}, \quad v \in V, \quad \psi_{int} \in \Psi(V).$$

- By R(X, V) we denote the set of all resets.
- By \vec{r} we denote a finite list $\langle r_1, \ldots, r_n \rangle$, $n \in \mathbb{N}_0$, of reset operations $r_i \in R(X, V)$; $\langle \rangle$ is the empty list.
- By R(X, V)* we denote the set of all such lists of reset operations (also called reset vector).

Examples: Modification or not? Why? (x, y clocks; v, w variables)

(a)
$$x := y$$
, (b) $x := v$, (c) $v := x$, (d) $v := w$, (e) $v := 0$

Structuring Facilities

- Global declarations of of clocks, data variables, channels, and constants.
- Binary and broadcast channels: chan c and broadcast chan b.
- Templates of timed automata.

-15 - 2018-01-09 -

2018-01-09

- Instantiation of templates (instances are called process).
- System definition: list of processes.

8/39

Restricting Non-determinism

- Urgent locations enforce local immediate progress.
- Committed locations enforce atomic immediate progress.

U

• Urgent channels - enforce cooperative immediate progress.

urgent chan press;

Replace

-15 -2018-01-09

Extended Timed Automata F G Definition 4.39. An extended timed automaton is a structure $\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$ where L, B, X, I, ℓ_{ini} are as in Definition 4.3, except that location invariants in I are downward closed, and where • $C \subseteq L$: committed locations, • $U \subseteq B$: urgent channels, • V: a set of data variables (with finite domain), • $E \subseteq L \times B_{1?} \times \bigoplus(X, V) \times \underline{R}(X, V)^* \times L$ is a set of directed edges such that $(\ell, \alpha, \varphi, \vec{r}, \ell') \in E \land \operatorname{chan}(\alpha) \in U \implies \varphi = true.$ Edges $(\ell, \alpha, \varphi, \vec{r}, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of reset operations.

Content

- Extended Timed Automata Syntax
- • Data Variables
- **Urgent** locations and channels
- -• Committed locations

Extended Timed Automata – Semantics

- labelled transition system
- extended valuations, timeshift, modification
- examples for urgent / committed
- Extended vs. Pure Timed Automata
- The Reachability Problem of Extended Timed Automata
- Uppaal Query Language
- Transition graph (!)
- By-the-way: satisfaction relation decidable.

12/39

Operational Semantics of Networks

15 - 2018-01-09

Definition 4.40. Let $\mathcal{A}_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i}), \quad 1 \leq i \leq n,$ be extended timed automata with pairwise disjoint sets of clocks X_i . The operational semantics of $\mathcal{N} = \widehat{C}(\mathcal{A}_{e,1}, \dots, \mathcal{A}_{e,n})$ (closed!) is the labelled transition system $\mathcal{T}_e(\mathcal{C}(\mathcal{A}_{e,1}, \dots, \mathcal{A}_{e,n})) = \mathcal{T}(\mathcal{N}) = (Conf, \text{Time} \cup \{\tau\}, \{\stackrel{\lambda}{\rightarrow} \mid \lambda \in \text{Time} \cup \{\tau\}\}, C_{ini})$ where • $X = \bigcup_{i=1}^n X_i$ and $V = \bigcup_{i=1}^n V_i,$ • $Conf = \{\langle \vec{\ell}, \nu \rangle \mid \ell_i \in L_i, \nu : X \cup V \rightarrow \text{Time}, \nu \models \bigwedge_{k=1}^n I_k(\ell_k)\},$ • $C_{ini} = \{\langle \vec{\ell}_{ini}, \nu_{ini} \rangle\} \cap Conf,$ The transition relations consists of transitions of the following three types.

Helpers: Extended Valuations and Timeshift

- Now: $\nu: X \cup V \to \mathsf{Time} \cup \mathcal{D}(V)$
- Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression).
- " \models " extends canonically to expressions from $\Phi(X, V)$.
- - $(\nu + t)(x) := \nu(x) + t, x \in X$,
 - $(\nu+t)(v) := \nu(v), v \in V.$
- Effect of modification $r \in R(X, V)$ on ν , denoted by $\nu[r]$:

$$\nu[x := 0](a) := \begin{cases} 0, \text{ if } a = x, \\ \nu(a), \text{ otherwise} \end{cases} \\ \nu[v := \psi_{int}](a) := \begin{cases} \nu(\psi_{int}), \text{ if } a = v, \\ \nu(a), \text{ otherwise} \end{cases} \\ \bullet \text{ We set } \nu[\langle r_1, \dots, r_n \rangle] := \langle \nu[r_1] \dots [r_n] \rangle = (\ (\ (\ \nu[r_1] \)[r_2] \)[r_3] \ \dots \)[r_n]. \end{cases}$$

14/39

Operational Semantics of Networks: Internal Transitions

- An internal transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there is $i \in \{1, \dots, n\}$ such that
 - there is a τ -edge $(\ell_i, \tau, \varphi, \vec{r}, \ell'_i) \in E_i$,
 - $\nu \models \varphi$,
 - $\vec{\ell'} = \vec{\ell}[\ell_i := \ell'_i]$,
 - $\nu' = \nu[\vec{r}]$,
 - $\nu' \models I_i(\ell'_i)$,
 - (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \ldots, n\}$ then $\ell_i \in C_i$.

- A synchronisation transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there are $i, j \in \{1, \dots, n\}$ with $i \neq j$ such that
 - there are edges $(\ell_i, b_i!, \varphi_i, \vec{r_i}, \ell'_i) \in E_i$ and $(\ell_j, b_i!, \varphi_j, \vec{r_j}, \ell'_j) \in E_j$, $\mu \vdash (\rho, \Lambda, \rho)$
 - $\nu \models \varphi_i \land \varphi_j$,
 - $\vec{\ell'} = \vec{\ell}[\ell_i := \ell'_i][\ell_j := \ell'_j],$
 - $\nu' = (\nu[\vec{r_i})[\vec{r_j}],$
 - $\nu' \models I_i(\ell'_i) \land I_j(\ell'_i),$
 - (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \ldots, n\}$ then $\ell_i \in C_i$ or $\ell_j \in C_j$.

16/39

Operational Semantics of Networks: Delay Transitions

- A delay transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle$ occurs if
 - $\nu + t \models \bigwedge_{k=1}^{n} I_k(\ell_k),$
 - (\clubsuit) there are no $i \not= j \in \{1, \dots, n\}$ and $b \in U$ with $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell'_i) \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell'_j) \in E_j$,
 - (\clubsuit) there is no $i \in \{1, \ldots, n\}$ such that $\ell_i \in C_i$.

Restricting Non-determinism: Example

	Property 1	Property 2	Property 3
	w can become 1	$y \le 0$ holds	$(x \ge y \implies y \le 0)$
		when ${\mathcal Q}$ is in q_1	holds when in p_1 and q_1
$\mathcal{N}:=\mathcal{P}\ \mathcal{Q}\ \mathcal{R}$	 ✓ 	×	×
\mathcal{N} , q_1 urgent	\checkmark	<i>\</i>	
\mathcal{N} , q_1 committed	X	\checkmark	
\mathcal{N} , b urgent	\checkmark	×	(v)

18/39

Content

2018-01-09

- Extended Timed Automata Syntax
- →● Data Variables
- • Urgent locations and channels
- └_(● Committed locations

• Extended Timed Automata - Semantics

- labelled transition system
- • extended valuations, timeshift, modification
- examples for urgent / committed
- Extended vs. Pure Timed Automata
- The Reachability Problem of Extended Timed Automata
- Uppaal Query Language
- —• Transition graph (!)
- **By-the-way**: satisfaction relation **decidable**.

20/39

Extended vs. Pure Timed Automata

 $\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$ $(\ell, \alpha, \varphi, \vec{r}, \ell') \in L \times B_{!?} \times \Phi(X, V) \times R(X, V)^* \times L$

VS.

 $\begin{aligned} \mathcal{A} &= (L, B, X, I, E, \ell_{ini}) \\ (\ell, \alpha, \varphi, Y, \ell') \in E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L \end{aligned}$

- \mathcal{A}_e is in fact (or specialises to) a **pure** timed automaton if
 - $C = \emptyset$,
 - $U = \emptyset$,
 - $V = \emptyset$,

- 15 - 2018-01-09 - Sepurel -

- for each $\vec{r} = \langle r_1, \dots, r_n \rangle$, every r_i is of the form x := 0 with $x \in X$.
- $I(\ell), \varphi \in \Phi(X)$ is then a consequence of $V = \emptyset$.

Theorem 4.41. If A_1, \ldots, A_n specialise to pure timed automata, then the operational semantics of

$$\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$$

and

chan
$$b_1, \ldots, b_m \bullet (\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n),$$

where $\{b_1, \ldots, b_m\} = \bigcup_{i=1}^n B_i$, coincide, i.e.

$$\mathcal{T}_e(\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)) = \mathcal{T}(\mathsf{chan}\,b_1,\ldots,b_m \bullet (\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n)).$$

22/39

Content

- 15 - 2018-01-09 -

- 2018-01-09 -

- Extended Timed Automata Syntax
- Data Variables
- -• Urgent locations and channels
- Committed locations

• Extended Timed Automata - Semantics

- labelled transition system
- • extended valuations, timeshift, modification
- examples for urgent / committed
- Extended vs. Pure Timed Automata
- The Reachability Problem of Extended Timed Automata
- Uppaal Query Language
- • Transition graph (!)
- **By-the-way**: satisfaction relation **decidable**.

24/39

Recall

- 15 - 2018-01-09 - Setadec -

Theorem 4.33. [*Location Reachability*] The location reachability problem for **pure** timed automata is **decidable**.

Theorem 4.34. [Constraint Reachability] Constraint reachability is **decidable** for **pure** timed automata.

• And what about tea `W extended timed automata?

Extended Timed Automata add the following features:

- Data-Variables
 - As long as the domains of all variables in V are finite, adding data variables doesn't harm decidability.
 - If they're infinite, we've got a problem (encode two-counter machine!).
- Structuring Facilities

2018-01-09 -

- Don't hurt they're merely abbreviations.
- Restricting Non-determinism
 - Restricting non-determinism doesn't affect the configuration space Conf.
 - Restricting non-determinism only removes certain transitions, so it makes the reachable part of the region automaton even smaller (not necessarily strictly smaller).

26/39

Uppaal Fragment of Timed Computation Tree Logic

Consider $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \ldots, \mathcal{A}_n)$ over data variables V.

• basic formula:

aka, Uppaal guery languagi

where $\ell \in L_i$ is a location and φ a constraint over X_i and V.

configuration formulae:

 $term ::= atom \mid \neg term \mid term_1 \land term_2$

atom ::= $\mathcal{A}_i . \ell \mid \varphi$

• existential path formulae: $\mathcal{EF} \in \mathcal{G}$ ("exists finally", "exists globally") $\hat{\mathcal{F}} \in \mathcal{G}$ ("exists finally", "exists globally") $\hat{\mathcal{F}} = \hat{\mathcal{F}} \in \mathcal{G}$ ("exists finally", "exists globally")

• universal path formulae:

("always finally", "always globally", "leads to")

- $a\text{-}formula ::= \forall \Diamond term \mid \forall \Box term \mid term_1 \longrightarrow term_2$
- formulae:

-15 - 2018-01-09 - Sutl

2018-01-09

F ::= e-formula | a-formula

28/39

Tell Them What You've Told Them...

- For convenience, time automata can be extended by
 - data variables, and
 - urgent / committed locations.
- None of these extensions harm decidability, as long as the data variables have a finite domain.
- Properties to be checked for a timed automata model can be specified using the Uppaal Query Language,
 - which is a tiny little fragment of Timed CTL (TCTL),
 - and as such by far not as expressive as Duration Calculus.
- TCTL is another means to formalise requirements.

References

38/39

References

-15 - 2018-01-09 - main -

- 15 - 2018-01-09 - main -

Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.