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Introduction

• Observables and Evolutions

• Duration Calculus (DC)

• Semantical Correctness Proofs

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• TA model-checking

• Extended Timed Automata

• Undecidability Results

obs : Time � D(obs) hobs0, �0i, t0
�0

�� hobs1, �1i, t1 . . .

• Automatic Verification...

...whether a TA satisfies a DC formula, observer-based

• Recent Results:

• Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or . . .
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• A satisfaction relation between timed automata
and DC formulae

• observables of timed automata

• evolution induced by computation path

• A simple and wrong solution.

• ad-hoc fix for invariants

• Testable DC Properties

• observer construction

• untestable DC properties
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Model-Checking DC Properties with Uppaal
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off light bright
press?

x := 0

press?

x � 3

press?

x > 3

press?

k

�0 �1 �2 �3

�4

press!

y := 0

y < 2

press! press!

y := 0

press!

y > 3press!

|=? F

DC formula

• Question 1: what is the “|=”-relation here?

• Question 2: what kinds of DC formulae can we check with Uppaal?

• Clear: Not every DC formula.

(Otherwise contradicting undecidability results.)

• Quite clear: F = ��o�� or F = ¬��light�

(Use Uppaal’s fragment of TCTL, something like (!) �� o� .)

• Maybe: F = � > 5 =� ��o��5

• Not so clear: F = ¬�(�bright� ; �light�)
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Observables of a Network of Timed Automata
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Let N be a network of n extended timed automata

Ae,i = (Li, Ci, Bi, Ui, Xi, Vi, Ii, Ei, �ini,i), 1 � i � n

For simplicity: assume that all Li and Vi are pairwise disjoint (otherwise rename).

Definition. The observables Obs(N ) of N are

{�1, . . . , �n} �
�

1�i�n

Vi

with

• D(�i) = Li,

• D(v) is the domain of data-variable v in Ae,i.
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Example
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off light bright
press?

x := 0

press?

x � 3

press?

x > 3

press?

k �0

press!

• Observables: Obs(N ) = {�1, �2} with

• D(�1) = {off, light, bright}, D(�2) = {�0}. (No data variables in N !)

Consider computation path

� =
� o�

0

�

, 0
2.5
���

� o�
2.5

�

, 2.5
�
��

� light
0

�

, 2.5
2.0
���

� light
2.0

�

, 4.5
�
��

� bright
2.0

�

, 4.5 . . .

and construct interpretation I� : Obs(N ) � (Time � D):

I�(�1)

Time

bright

light

o�

0 1 2 3 4 5 6 7

That’d be Too Easy
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖ ℓ0

press!

Consider computation path

ξ =
〈 off

0

〉

, 0
2.5
−−→

〈 off
2.5

〉

, 2.5
τ
−→

〈 light
0

〉

, 2.5
τ
−→

〈 bright
0

〉

, 2.5
τ
−→

〈 off
0

〉

, 2.5
1.0
−−→ . . .

Iξ

Time

bright

light

off

0 1 2 3 4 5 6 7
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Our approach:

• Consider only those configurations assumed for more than 0 time units.

• Extend finite computation paths by keeping last discrete configuration.

Definition. Let

ξ = 〈~ℓ0, ν0〉, t0
λ1−→ 〈~ℓ1, ν1〉, t1

λ2−→ 〈~ℓ2, ν2〉, t2
λ3−→ . . .

be a computation path of network N (infinite or of length n).

Then

ξ̄ : Time → Conf (N )

t 7→ 〈~ℓj , νj + t− tj〉 where j = max{i ∈ N0 | ti ≤ t}

and (if ξ finite) 〈~ℓn, νn + t− tn〉 for t > tn

Recall: ξ(t) used for the query language yielded the set of all configurations at t.

Evolutions of TA Network Cont’d
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ξ̄ induces the unique interpretation

Iξ : Obs(N ) → (Time → D)

which is defined pointwise as follows:

Iξ(ℓi)(t) = ℓi , if ξ̄(t) = 〈(ℓ1, . . . , ℓn), ν〉

Iξ(w)(t) = ν(w) , if ξ̄(t) = 〈~ℓ, ν〉

Example:

ξ =
〈 off
0

〉

, 0
2.5
−−→

〈 off
2.5

〉

, 2.5
τ
−→

〈 light
0

〉

, 2.5
τ
−→

〈bright
0

〉

, 2.5
τ
−→

〈 off
0

〉

, 2.5
1.0
−−→

〈 off
1

〉

, 3.5
τ
−→ . . .

Iξ

Time

bright

light

off

0 1 2 3 4 5 6 7
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ξ̄ induces the unique interpretation

Iξ : Obs(N ) → (Time → D)

which is defined pointwise as follows:

Iξ(ℓi)(t) = ℓi , if ξ̄(t) = 〈(ℓ1, . . . , ℓn), ν〉

Iξ(w)(t) = ν(w) , if ξ̄(t) = 〈~ℓ, ν〉

Example:

ξ =
〈 off
0

〉

, 0
2.5
−−→

〈 off
2.5

〉

, 2.5
τ
−→

〈 light
0

〉

, 2.5
τ
−→

〈bright
0

〉

, 2.5
τ
−→

〈 off
0

〉

, 2.5
1.0
−−→

〈 off
1

〉

, 3.5
τ
−→ . . .

Iξ

Time

bright

light

off

0 1 2 3 4 5 6 7

Clocks in Evolutions of TA Networks
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• But what about clocks? Why not x ∈ Obs(N ) for x ∈ Xi?

• We would know how to define Iξ(x)(t), namely

Iξ(x)(t) = νξ(t)(x) + (t− tξ(t)).

• But...



Clocks in Evolutions of TA Networks
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• But what about clocks? Why not x ∈ Obs(N ) for x ∈ Xi?

• We would know how to define Iξ(x)(t), namely

Iξ(x)(t) = νξ(t)(x) + (t− tξ(t)).

• But... Iξ(x)(t) changes too often.

Better (if needed):

• add (a finite subset of) Φ(X1 ∪ · · · ∪Xn) to Obs(N ),

with D(ϕ) = {0, 1} for ϕ ∈ Φ(X1 ∪ · · · ∪Xn).

• set

Iξ(ϕ)(t) =

{

1, if ν(x) |= ϕ, ξ̄(t) = 〈~ℓ, ν〉

0, otherwise

The truth value of constraint ϕ may persist over non-point intervals.

Some Checkable Properties
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Model-Checking DC Properties with Uppaal
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“For every complex problem there is an answer that is clear, simple, and wrong.”

Can’t we directly check N |= F for

• F = �⌈off⌉ and F = ¬♦⌈light⌉

by checking queries

• ∀�L.off and ∃♦L.light?

Model-Checking DC Properties with Uppaal
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“For every complex problem there is an answer that is clear, simple, and wrong.”

Can’t we directly check N |= F for

• F = �⌈off⌉ and F = ¬♦⌈light⌉

by checking queries

• ∀�L.off and ∃♦L.light?

Well, we have N |= ∀�L.off implies F = �⌈off⌉, but not vice versa.

ξ =
〈 off
0

〉

, 0
2.5
−−→

〈 off
2.5

〉

, 2.5
τ
−→

〈 light
0

〉

, 2.5
τ
−→

〈bright
0

〉

, 2.5
τ
−→

〈 off
0

〉

, 2.5
1.0
−−→

〈 off
1

〉

, 3.5
1.0
−−→ . . .

Iξ

Time

bright

light

off

0 1 2 3 4 5 6 7



Model-Checking Invariants with Uppaal
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• Ad-hoc fix: measure duration explicitly, transform N by

ℓ to ℓ

ϕ ϕ
z := 0

z := 0
z := 0

and obtain N ′.

Then check
N ′ |= ∀�(z > 0 =⇒ P )

to verify
N |= �⌈P ⌉.
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• A satisfaction relation between timed automata
and DC formulae

• observables of timed automata

• evolution induced by computation path

• A simple and wrong solution.

• ad-hoc fix for invariants

• Testable DC Properties

• observer construction

• untestable DC properties
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Testability
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Definition 6.1. A DC formula F is called testable if an observer (or
test automaton (or monitor)) AF exists such that for all networks N =
C(A1, . . . ,An) it holds that

N |= F iff C(A′

1, . . . ,A
′

n,AF ) |= ∀�¬(AF .qbad )

for some A′

i.

Otherwise F is called untestable.



Testability

–
17

–
2

0
18

-0
1-

18
–

S
d

ct
e

st
–

17/29

Definition 6.1. A DC formula F is called testable if an observer (or
test automaton (or monitor)) AF exists such that for all networks N =
C(A1, . . . ,An) it holds that

N |= F iff C(A′

1, . . . ,A
′

n,AF ) |= ∀�¬(AF .qbad )

for some A′

i.

Otherwise F is called untestable.

Theorem 6.4. DC implementables are testable.

Proposition 6.3. There exist untestable DC formulae.

Testable DC Formulae
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Theorem 6.4. DC implementables are testable.

• Initialisation: ⌈⌉ ∨ ⌈π⌉ ; true

• Sequencing: ⌈π⌉ −→ ⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Progress: ⌈π⌉
θ

−→ ⌈¬π⌉

• Synchronisation: ⌈π ∧ ϕ⌉
θ

−→ ⌈¬π⌉

• Bounded Stability: ⌈¬π⌉ ; ⌈π ∧ ϕ⌉
≤θ
−→ ⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Unbounded Stability: ⌈¬π⌉ ; ⌈π ∧ ϕ⌉−→⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Bounded initial stability: ⌈π ∧ ϕ⌉
≤θ
−→0 ⌈π ∨ π1 ∨ · · · ∨ πn⌉

• Unbounded initial stability: ⌈π ∧ ϕ⌉−→0⌈π ∨ π1 ∨ · · · ∨ πn⌉

Proof Sketch:

• For each implementable F , construct AF .

• Prove that AF is a test automaton.



Proof of Theorem 6.4: Preliminaries
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• Note: DC does not refer to communication between TA in the network, but only to
data variables and locations.

Example: ♦(⌈v = 0⌉ ; ⌈v = 1⌉)

• Recall: transitions of TA are only triggered by syncronisation,
not by changes of data-variables.

• Approach: have auxiliary step action.

Technically, replace each location

ℓ

with

C ℓc ℓ
step!

Note: the observer will consider data variables after all updates.

Proof of Theorem 6.4: Sketch
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• Example: ⌈π⌉
θ
−→ ⌈¬π⌉

q0

q1
q2

y ≤ 0
qabrt

qbad

step?

step?
π

x := 0

step?, π

x > θ

step?,¬π, y := 0

true

step?,¬π

true

step?, π

step?

step?
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Definition 6.5.

• A counterexample formula (CE for short) is a DC formula of the form:

true ; (⌈π1⌉ ∧ ℓ ∈ I1) ; . . . ; (⌈πk⌉ ∧ ℓ ∈ Ik) ; true

where for 1 ≤ i ≤ k,

• πi are state assertions,

• Ii are non-empty, and open, half-open, or closed time intervals of
the form

• (b, e) or [b, e) with b ∈ Q+
0 and e ∈ Q+

0 ∪̇ {∞},

• (b, e] or [b, e] with b, e ∈ Q+
0 .

(b,∞) and [b,∞) denote unbounded sets.

• Let F be a DC formula. A DC formula FCE is called counterexample
formula for F if |= F ⇐⇒ ¬(FCE ) holds.

Theorem 6.7. CE formulae are testable.

Untestable DC Formulae
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A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

“Whenever we observe a change from A to ¬A at time tA,
the system has to produce a change from B to ¬B at some time tB ∈ [tA, tA + 1] and a

change from C to ¬C at time tB + 1.

Sketch of Proof: Assume there is AF such that, for all networks N , we have

N |= F iff C(A′

1, . . . ,A
′

n,AF ) |= ∀�¬(AF .qbad )

Assume the number of clocks in AF is n ∈ N0.
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Consider the following time points:

• tA := 1

• tiB := tA + 2i−1
2(n+1) for i = 1, . . . , n+ 1

• tiC ∈
]

tiB + 1− 1
4(n+1) , t

i
B + 1 + 1

4(n+1)

[

for i = 1, . . . , n+ 1

with tiC − tiB 6= 1 for 1 ≤ i ≤ n+ 1.

Example: n = 3

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

Untestable DC Formulae Cont’d
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Consider the following time points:

• tA := 1

• tiB := tA + 2i−1
2(n+1) for i = 1, . . . , n+ 1

• tiC ∈
]

tiB + 1− 1
4(n+1) , t

i
B + 1 + 1

4(n+1)

[

for i = 1, . . . , n+ 1

with tiC − tiB 6= 1 for 1 ≤ i ≤ n+ 1.

Example: n = 3

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C
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Example: n = 3

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

• The shown interpretation I satisfies the assumption of the property.

• It has n+ 1 candidates to satisfy the commitment.

• By choice of tiC , the commitment is not satisfied; so F is not satisfied.

• Because AF is a test automaton for F , is has a computation path to qbad.

• Because n = 3, AF can not save all n+ 1 time points tiB .

• Thus there is 1 ≤ i0 ≤ n such that all clocks of AF have a valuation which is not in
2− t

i0
B + (− 1

4(n+1)
, 1
4(n+1)

)

Untestable DC Formulae Cont’d
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Example: n = 3

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

• Because AF is a test automaton for F , is has a computation path to qbad.

• Thus there is 1 ≤ i0 ≤ n such that all clocks of AF have a valuation which is not in
2− t

i0
B + (− 1

4(n+1)
, 1
4(n+1)

)

• Modify the computation to I ′ such that ti0C := t
i0
B + 1.

• Then I ′ |= F , but AF reaches qbad via the same path.

• That is: AF claims I ′ 6|= F .

• Thus AF is not a test automaton. Contradiction.
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• A satisfaction relation between timed automata
and DC formulae

• observables of timed automata

• evolution induced by computation path

• A simple and wrong solution.

• ad-hoc fix for invariants

• Testable DC Properties

• observer construction

• untestable DC properties

Tell Them What You’ve Told Them. . .
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• For testable DC formulae F , we can automatically verify
whether a network N satisfies F .

• by constructing an observer automaton

• and transforming N appropriately.

• There are untestable DC formulae.

(Everything else would be surprising.)
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