
–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

Real-Time Systems

Lecture 4: Duration Calculus II

2017-11-02

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

–
4

–
2

0
17

-1
1-

0
2

–
S

co
n

te
n

t
–

2/31

• Formulae

• syntax, priority groups

• syntactic substitution

• semantics

• well-definedness

• remarks, substitution lemma

• DC Abbreviations

• point interval, almost everywhere

• for some subinterval / for all subintervals

• Validity, Satisfiability, Realisability

• realisability / validity from 0

• Proving design ideas correct: Method

• Example: gas burner

Duration Calculus: Formulae

–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

3/31

Duration Calculus: Overview

–
4

–
2

0
17

-1
1-

0
2

–
S

d
co

ve
rv

ie
w

–

4/31

We will introduce four syntactical categories (and abbreviations):

(i) Symbols:
p,q

︷ ︸︸ ︷

true, false,=, <,>,≤,≥, f, g, X, Y, Z, d, x, y, z,

(ii) State Assertions:
P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:
θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

Formulae: Syntax

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

5/31

• The set of DC formulae is defined by the following grammar:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

where p is a predicate symbol, θi are terms, and x is a global variable.

• chop operator: ‘;’

• atomic formula: p(θ1, . . . , θn)

• rigid formula: all terms are rigid

• chop free: ‘;’ doesn’t occur

• usual notion of free and bound (global) variables

• Note: quantification only over (first-order) global variables,
not over (second-order) state variables.

Formulae: Priority Groups

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

6/31

• To avoid parentheses, we define the following five priority groups
from highest to lowest priority (or precedence):

• ¬ (negation)

• ; (chop)

• ∧, ∨ (and/or)

• =⇒ , ⇐⇒ (implication/equivalence)

• ∃ , ∀ (quantifiers)

Examples:

• ¬F ; F ∨G

(¬(F ; F)) ∨G

((¬F) ; F) ∨G

(¬F) ; (F ∨G)

• ∀x • F ∧ G

Syntactic Substitution...

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

7/31

...of a term θ for a variable x in a formula F .

• We use
F [x := θ]

to denote the formula that results from performing the following steps:

(i) transform F into F̃ by (consistently) renaming bound variables
such that no free occurrence of x in F̃

appears within a quantified subformula ∃ z •G or ∀ z •G
for some z occurring in term θ,

(ii) textually replace all free occurrences of x in F̃ by θ.

Syntactic Substitution...

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

7/31

...of a term θ for a variable x in a formula F .

• We use
F [x := θ]

to denote the formula that results from performing the following steps:

(i) transform F into F̃ by (consistently) renaming bound variables
such that no free occurrence of x in F̃

appears within a quantified subformula ∃ z •G or ∀ z •G
for some z occurring in term θ,

(ii) textually replace all free occurrences of x in F̃ by θ.

Example:

• θ1 := ℓ, F [x := θ1] = (ℓ ≥ y =⇒ ∃ z • z ≥ 0 ∧ ℓ = y + z)

Syntactic Substitution...

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

7/31

...of a term θ for a variable x in a formula F .

• We use
F [x := θ]

to denote the formula that results from performing the following steps:

(i) transform F into F̃ by (consistently) renaming bound variables
such that no free occurrence of x in F̃

appears within a quantified subformula ∃ z •G or ∀ z •G
for some z occurring in term θ,

(ii) textually replace all free occurrences of x in F̃ by θ.

Example:

• θ1 := ℓ, F [x := θ1] = (ℓ ≥ y =⇒ ∃ z • z ≥ 0 ∧ ℓ = y + z)

• θ2 := ℓ+ z, F = (x ≥ y =⇒ ∃ z • z ≥ 0 ∧ x = y + z)

Syntactic Substitution...

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

7/31

...of a term θ for a variable x in a formula F .

• We use
F [x := θ]

to denote the formula that results from performing the following steps:

(i) transform F into F̃ by (consistently) renaming bound variables
such that no free occurrence of x in F̃

appears within a quantified subformula ∃ z •G or ∀ z •G
for some z occurring in term θ,

(ii) textually replace all free occurrences of x in F̃ by θ.

Example:

• θ1 := ℓ, F [x := θ1] = (ℓ ≥ y =⇒ ∃ z • z ≥ 0 ∧ ℓ = y + z)

• θ2 := ℓ+ z, F [x := θ2] = (ℓ+ z ≥ y =⇒ ∃ z • z ≥ 0 ∧ ℓ+ z = y + z)

Syntactic Substitution...

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

7/31

...of a term θ for a variable x in a formula F .

• We use
F [x := θ]

to denote the formula that results from performing the following steps:

(i) transform F into F̃ by (consistently) renaming bound variables
such that no free occurrence of x in F̃

appears within a quantified subformula ∃ z •G or ∀ z •G
for some z occurring in term θ,

(ii) textually replace all free occurrences of x in F̃ by θ.

Example:

• θ1 := ℓ, F [x := θ1] = (ℓ ≥ y =⇒ ∃ z • z ≥ 0 ∧ ℓ = y + z)

• θ2 := ℓ+ z, F [x := θ2] = (ℓ+ z ≥ y =⇒ ∃ z • z ≥ 0 ∧ ℓ+ z = y + z)

• F [x := θ2] = ℓ+ z ≥ y =⇒ ∃ z̃ • z̃ ≥ 0 ∧ ℓ+ z = y + z̃)

Formulae: Semantics

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

8/31

• The semantics of a formula is a function

IJF K : Val× Intv → {tt,ff}

IJF K(V, [b, e]): truth value of F under interpretation I and valuation V in the interval [b, e].

• IJF K(V , [b, e]) is defined inductively over the structure of F :

IJp(θ1, . . . , θn)K(V , [b, e]) = p̂(IJθ1K(V , [b, e]), . . . , IJθnK(V , [b, e])),

IJ¬F1K(V , [b, e]) = tt iff IJF1K(V , [b, e]) = ff,

IJF1 ∧ F2K(V , [b, e]) = tt iff IJFiK(V , [b, e]) = tt, i ∈ {1, 2},

IJ∀x • F1K(V , [b, e]) = tt iff for all a ∈ R,

IJF1[x := a]K(V , [b, e]) = tt

IJF1 ; F2K(V , [b, e]) = iff there is an m ∈ [b, e] such that

IJF1K(V , [b,m]) = tt and IJF2K(V , [m, e]) = tt.

Formulae: Example

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

9/31

F := ∫ L = 0 ; ∫ L = 1

Time

1

0
LI

0 1 2 3 4

• IJF K(V , [0, 2]) = tt

Proof:

• Choose m = 1 as chop point.

Formulae: Example

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

9/31

F := ∫ L = 0 ; ∫ L = 1

≡ ((∫ L) = 0) ; ((∫ L) = 1) ≡ = ((∫ L), 0) ; = ((∫ L), 1)

Time

1

0
LI

0 1 2 3 4

• IJF K(V , [0, 2]) = tt

Proof:

• Choose m = 1 as chop point.

Formulae: Example

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

9/31

F := ∫ L = 0 ; ∫ L = 1

≡ ((∫ L) = 0) ; ((∫ L) = 1) ≡ = ((∫ L), 0) ; = ((∫ L), 1)

Time

1

0
LI

0 1 2 3 4

• IJF K(V , [0, 2]) = tt

Proof:

• Choose m = 1 as chop point. Then

• IJ= ((∫ L), 0)K(V , [0, 1]) = =̂(IJ∫ LK(V , [0, 1]), IJ0K(V , [0, 1]))

= =̂

(∫
1

0

LI(t) dt , 0̂

)

= =̂(0, 0) = tt,

Formulae: Example

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

9/31

F := ∫ L = 0 ; ∫ L = 1

≡ ((∫ L) = 0) ; ((∫ L) = 1) ≡ = ((∫ L), 0) ; = ((∫ L), 1)

Time

1

0
LI

0 1 2 3 4

• IJF K(V , [0, 2]) = tt

Proof:

• Choose m = 1 as chop point. Then

• IJ= ((∫ L), 0)K(V , [0, 1]) = =̂(IJ∫ LK(V , [0, 1]), IJ0K(V , [0, 1]))

= =̂

(∫
1

0

LI(t) dt , 0̂

)

= =̂(0, 0) = tt,

• and IJ= ((∫ L), 1)K(V , [1, 2])
= =̂(IJ∫ LK(V , [1, 2]), IJ1K(V , [1, 2])) = =̂(1, 1) = tt,

Formulae: Example

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

9/31

F := ∫ L = 0 ; ∫ L = 1

≡ ((∫ L) = 0) ; ((∫ L) = 1) ≡ = ((∫ L), 0) ; = ((∫ L), 1)

Time

1

0
LI

0 1 2 3 4

• IJF K(V , [0, 2]) = tt

Proof:

• Choose m = 1 as chop point. Then

• IJ= ((∫ L), 0)K(V , [0, 1]) = =̂(IJ∫ LK(V , [0, 1]), IJ0K(V , [0, 1]))

= =̂

(∫
1

0

LI(t) dt , 0̂

)

= =̂(0, 0) = tt,

• and IJ= ((∫ L), 1)K(V , [1, 2])
= =̂(IJ∫ LK(V , [1, 2]), IJ1K(V , [1, 2])) = =̂(1, 1) = tt,

• Is the chop point m unique?

Formulae: Example

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

9/31

F := ∫ L = 0 ; ∫ L = 1

≡ ((∫ L) = 0) ; ((∫ L) = 1) ≡ = ((∫ L), 0) ; = ((∫ L), 1)

Time

1

0
LI

0 1 2 3 4

• IJF K(V , [0, 2]) = tt

Proof:

• Choose m = 1 as chop point. Then

• IJ= ((∫ L), 0)K(V , [0, 1]) = =̂(IJ∫ LK(V , [0, 1]), IJ0K(V , [0, 1]))

= =̂

(∫
1

0

LI(t) dt , 0̂

)

= =̂(0, 0) = tt,

• and IJ= ((∫ L), 1)K(V , [1, 2])
= =̂(IJ∫ LK(V , [1, 2]), IJ1K(V , [1, 2])) = =̂(1, 1) = tt,

• Is the chop point m unique?

• Would the chop point for formula ∫ ¬L = 1 ; ∫ L = 1 be unique?

Formulae: Remarks

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

10/31

• rigid formula: all terms are rigid

• rigid term: no length or integral operators

• chop free: ‘;’ doesn’t
occur

Remark 2.10. [Rigid and chop-free] Let F be a duration formula,
I an interpretation, V a valuation, and [b, e] ∈ Intv.

• If F is rigid, then

∀ [b′, e′] ∈ Intv : IJF K(V , [b, e]) = IJF K(V , [b′, e′]).

• If F is chop-free or θ is rigid,
then in the calculation of the semantics of F ,
every occurrence of θ denotes the same value.

Substitution Lemma

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cf

o
rm

–

11/31

Lemma 2.11. [Substitution]
Consider a formulaF , a global variablex, and a term θ such thatF is chop-
free or θ is rigid.

Then for all interpretations I , valuations V , and intervals [b, e],

IJF [x := θ]K(V , [b, e]) = IJF K(V [x := a], [b, e])

where a = IJθK(V , [b, e]).

• Negative Example: F := ℓ = x ; ℓ = x =⇒ ℓ = 2 · x, θ := ℓ

Duration Calculus: Overview

–
4

–
2

0
17

-1
1-

0
2

–
S

d
co

ve
rv

ie
w

–

12/31

We will introduce four syntactical categories (and abbreviations):

(i) Symbols:
p,q

︷ ︸︸ ︷

true, false,=, <,>,≤,≥, f, g, X, Y, Z, d, x, y, z,

(ii) State Assertions:
P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:
θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

Duration Calculus Abbreviations

–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

13/31

Abbreviations

–
4

–
2

0
17

-1
1-

0
2

–
S

d
ca

b
b

re
v

–

14/31

• ⌈⌉ := ℓ = 0 (point interval)

• ⌈P ⌉ := ∫ P = ℓ ∧ ℓ > 0 (almost everywhere)

• ⌈P ⌉t := ⌈P ⌉ ∧ ℓ = t (for time t)

• ⌈P ⌉≤t := ⌈P ⌉ ∧ ℓ ≤ t (up to time t)

• ♦F := true ; F ; true (for some subinterval)

• �F := ¬♦¬F (for all subintervals)

Abbreviations: Examples

–
4

–
2

0
17

-1
1-

0
2

–
S

d
ca

b
b

re
v

–

15/31

Time

1

0
LI

0 2 4 6 8

IJ ∫ L = 0 K(V , [0, 2]) =

IJ ∫ L = 1 K(V , [2, 6]) =

IJ ∫ L = 0 ; ∫ L = 1 K(V , [0, 6]) =

IJ ⌈¬L⌉ K(V , [0, 2]) =

IJ ⌈L⌉ K(V , [2, 3]) =

IJ ⌈¬L⌉ ; ⌈L⌉ K(V , [0, 3]) =

IJ ⌈¬L⌉ ; ⌈L⌉ ; ⌈¬L⌉ K(V , [0, 6]) =

IJ ♦⌈L⌉ K(V , [0, 6]) =

IJ ♦⌈¬L⌉ K(V , [0, 6]) =

IJ ♦⌈¬L⌉2 K(V , [0, 6]) =

IJ ♦⌈¬L⌉2 ; ⌈¬L⌉1 ; ⌈¬L⌉3 K(V , [0, 6]) =

–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

16/31

Duration Calculus: Preview

–
2

–
2

0
17

-1
0

-1
9

–
S

d
cp

re
vi

e
w

–

27/31

• Duration Calculus is an interval logic.

• Formulae are evaluated in an
(implicitly given) interval.

gas valve

�ame sensor

ignition

• G,F, I,H : {0, 1}

• Define L : {0, 1} as G � ¬F .
Strangest operators:

• almost everywhere — Example: �G�

(Holds in a given interval [b, e] iff the gas valve is open almost everywhere.)

• chop — Example: (�¬I� ; �I� ; �¬I�) =� � � 1

(Ignition phases last at least one time unit.)

• integral — Example: � � 60 =� � L � �

20

(At most 5% leakage time within intervals of at least 60 time units.)

Content

–
4

–
2

0
17

-1
1-

0
2

–
S

co
n

te
n

t
–

17/31

• Formulae

• syntax, priority groups

• syntactic substitution

• semantics

• well-definedness

• remarks, substitution lemma

• DC Abbreviations

• point interval, almost everywhere

• for some subinterval / for all subintervals

• Validity, Satisfiability, Realisability

• realisability / validity from 0

• Proving design ideas correct: Method

• Example: gas burner

DC Validity, Satisfiability, Realisability

–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

18/31

Validity, Satisfiability, Realisability

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cs

at
–

19/31

Let I be an interpretation, V a valuation, [b, e] an interval, and F a DC formula.

• I,V , [b, e] |= F (read: F holds in I , V , [b, e]) iff IJF K(V , [b, e]) = tt.

• F is called satisfiable iff it holds in some I , V , [b, e].

• I,V |= F (read: I and V realise F) iff ∀ [b, e] ∈ Intv : I,V , [b, e] |= F .

• F is called realisable iff some I and V realise F .

• I |= F (read: I realises F) iff ∀V ∈ Val : I,V |= F .

• |= F (read: F is valid) iff ∀ I : I |= F .

Validity vs. Satisfiability vs. Realisability

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cs

at
–

20/31

Remark 2.13. For all DC formulae F ,

• F is satisfiable if and only if ¬F is not valid,

F is valid if and only if ¬F is not satisfiable.

• If F is valid then F is realisable, but not vice versa.

• If F is realisable then F is satisfiable, but not vice versa.

Examples: Valid? Realisable? Satisfiable?

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cs

at
–

21/31

• ℓ ≥ 0

• ℓ = ∫ 1

• ℓ = 30 ⇐⇒ ℓ = 10 ; ℓ = 20

• ((F ; G) ; H) ⇐⇒ (F ; (G ; H))

• ∫ L ≤ x

• ℓ = 2

Initial Values

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cs

at
–

22/31

• I,V |=0 F (read: I and V realise F from 0) iff

∀ t ∈ Time : I,V , [0, t] |= F.

• F is called realisable from 0 iff some I and V realise F from 0.

• Intervals of the form [0, t] are called initial intervals.

• I |=0 F (read: I realises F from 0) iff ∀V ∈ Val : I,V |=0 F .

• |=0 F (read: F is valid from 0) iff ∀ I : I |=0 F .

Initial or not Initial...

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cs

at
–

23/31

Remark. For all interpretations I , valuations V , and DC formulae F ,

(i) I,V |= F implies I,V |=0 F ,

(ii) if F is realisable then F is realisable from 0, but not vice versa,

(iii) F is valid iff F is valid from 0.

Content

–
4

–
2

0
17

-1
1-

0
2

–
S

co
n

te
n

t
–

24/31

• Formulae

• syntax, priority groups

• syntactic substitution

• semantics

• well-definedness

• remarks, substitution lemma

• DC Abbreviations

• point interval, almost everywhere

• for some subinterval / for all subintervals

• Validity, Satisfiability, Realisability

• realisability / validity from 0

• Proving design ideas correct: Method

• Example: gas burner

Specification and Semantics-based Correctness Proofs

of Real-Time Systems with DC

–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

25/31

Methodology (in an ideal world)

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cm

e
th

–

26/31

In order to prove a controller design correct wrt. a specification:

(i) Choose observables ‘Obs’.

(ii) Formalise the requirements ‘Spec’
as a conjunction of DC formulae (over ‘Obs’).

(iii) Formalise a controller design ‘Ctrl’
as a conjunction of DC formulae (over ‘Obs’).

(iv) We say ‘Ctrl’ is correct (wrt. ‘Spec’) iff

|=0 Ctrl =⇒ Spec,

so “just” prove |=0 Ctrl =⇒ Spec.

Gas Burner Revisited

–
4

–
2

0
17

-1
1-

0
2

–
S

d
cg

as
b

u
rn

e
r

–

27/31

gas valve

flame sensor

ignition

(i) Choose observables:

• F : {0, 1}: value 1 models “flame sensed now” (input)

• G : {0, 1}: value 1 models “gas valve is open now” (output)

• define L := G ∧ ¬F to model leakage

(ii) Formalise the requirement:

Req :=�(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)

“in each interval of length at least 60 time units, at most 5% of the time leakage”

(iii) Formalise controller design ideas:

• Des-1 :=�(⌈L⌉ =⇒ ℓ ≤ 1)

“leakage phases last for at most one time unit”

• Des-2 :=�(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)

“non-leakage phases between two leakage-phases last at least 30 time units”

(iv) Prove correctness, i.e. prove |= (Des-1 ∧ Des-2 =⇒ Req).

(Or do we want “|=0”...?)

Content

–
4

–
2

0
17

-1
1-

0
2

–
S

co
n

te
n

t
–

28/31

• Formulae

• syntax, priority groups

• syntactic substitution

• semantics

• well-definedness

• remarks, substitution lemma

• DC Abbreviations

• point interval, almost everywhere

• for some subinterval / for all subintervals

• Validity, Satisfiability, Realisability

• realisability / validity from 0

• Proving design ideas correct: Method

• Example: gas burner

Tell Them What You’ve Told Them. . .

–
4

–
2

0
17

-1
1-

0
2

–
S

tt
w

y
tt

–

29/31

• Duration Calculus Formulae

• using, e.g., the chop operator

are evaluated for intervals and valuations.

The semantics of a DC formula is a truth value.

• The following abbreviations are sometimes useful

• point interval (⌈⌉), almost everywhere (⌈P ⌉),

• for some subinterval (♦F), for all subintervals (�F)

• DC Formulae have notions of

• satisfiability and validity (as usual),

• realisability (“for all subintervals”)

• also: from 0

• Outlook on next lecture:
proving design ideas correct wrt. requirements.

References

–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

30/31

References

–
4

–
2

0
17

-1
1-

0
2

–
m

ai
n

–

31/31

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

