Real-Time Systems

Lecture 17: Automatic Verification of
DC Properties for TA 11

2018-01-18

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Content

Introduction

« Observables and Evolutions

Duration Calculus (DC)

= DC Decidability
+ DC Implementabfles

* PLC-Automa

obs : Time — 2(obs)

« Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or ...

23

Model-Checking DC Properties with Uppaal

DC ‘M:.:En
EF

[
Qs

PR A %

+ Question 1: what is the relation here?

* Question 2: what kinds of DC formulae can we check with Uppaal?
« Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)
- Qui
(Use Uppaals fragment of TCTL, somethin

clear: F =Ofoff| or F =-0[light]
ke

) v off.)

© Maybe: F = £>5 = 0[off]®

« Notso clear: F = —0([bright] ; [light])

Observing Timed Automata

Content

* A satisfaction relation between timed automata
and DC formulae

o observables of timed automata
(e evolution induced by computation path

« Asimple and wrong solution.

7/,- ad-hoc fix for invariants

» Testable DC Properties
W- observer construction
(o untestable DC properties

Observables of a Network of Timed Automata

Let \ be a network of n extended timed automata

Aci = (Li;Ci, By, Ui, X3, Vi I, By, bini i), 1<i<n

For simplicity: assume thatall Z; and V; are pairwise disjoint (otherwise rename)

n. The observables Obs(\) of A are
{o,..,6}0 |
1<i<n
with {e, -0
o D(&;) = Li,
« D(v) is the domain of data-variable v in A,

Example

« Observables: Obs(\') = {£1, 2} with
o D(t1) = {off. light, bright}, D(t) = {£o}

Consider computation path

€= (.02 (3) 25 7 (VEht) o5 20, (Thty 45, (BNt 45

and construct interpretation Z; : Obs(A") — (Time — D)

Hm?:%
bright |
ight
off

f -
o 1 2 3 4 5 6 7 [Time

Evolutions of TA Network Cont’d

£ induces the unique interpretation
T¢ : Obs(N) — (Time — D)

which is defined pointwise as follows:

Example:

ff 25 ,0ffy 5 7 clighty - = ,brighty , . = ,offy ,. 1.0 off
e=(9) 025 (M) 25 T)25 5 2.5 5 ()25 =5 ("),
0) 25 % CTF) 0 1

4 5 6 7 Time

Consider computation path

Sy 25 T (MEM) 9.5 7y (BB 95 T (o) 25 10

e=(0
—_—

7 0bs = (Tme —
I T 0bs > (> @)

bright
light
off

I .
,

o 1 213 4 5 ¢ 7 Tme

8m
Evolutions of TA Network Cont’d
£ induces the unique interpretation
Te : Obs(\) — (Time — D)
which is defined pointwise as follows:
Ze(t)(t) = ¢ #E() = (€. "))
Te(w)(t) = v(w) ifE() = (Lv)
Example:
€= (%0025 (§Ty 25 7, (lighty 557, (brighty o5 7, (offy 05 20, (offy 551,
N
2 f -t t t t t —
o 1 2 3 4 5 e 7 '™
10129

Evolutions of TA Network

Our approach:
« Consider only those configurations assumed for more than O time units.
» Extend finite computation paths by keeping last discrete configuration.

on. Let

&= (o, w0 to 25 (T, mn) 1y 25 (T)ty 255
be a computation path of network A/ (infinite or of length n).
Then
£: Time — Conf(N)
t = ((F,v; +t — t;) where j = max{i € No | £ < 1})
&a@ &finite) (7, v+t — t,) fort >)

Recall: £(t) used for the query language yielded the set of all configurations at ¢.

Clocks in Evolutions of TA Networks

» But what about clocks? Why not = € Obs(\) forz € X;?

» We would know how to define Z; () (t), namely

Ze()(t) = vee (2) + (t = teqr))-

o But.. P x>3 /uO

s

Clocks in Evolutions of TA Networks Model-Checking DC Properties with Uppaal

« Butwhat about clocks? Why not z € Obs(\) for = € X;? “For every complex problem there is an answer that is clear, simple, and wrong”’

. i
+ We would know how to define Z¢ () (t), namely Canitwe directly nrmngﬂ/ *\W MM\L/\D\{, P

Te()(t) = veeoy (@) + (t = teq))- c M.er_w@ .ea F = -0[light] T e
Some Checkable Properties Y checking queries
o But.. Z¢(x)(t) changes too often. e YOLoff and 30 Llight? /nnm\MU ch Q\wqmmrw
Better (if needed): Vi O k1 M. oo it
" e on
« add (afinite subset of) &(X, U - -- U X,,) to Obs(A\), 4 &MU : /
with D(p) = {0,1} for p € B(X, U+ U X,.). N e VO Coff T
° set = =2 %
Lifv(z) . £(t) = (Lv) .
Te(o)(t) = ;
<(P)(t) T. otherwise
. The truth value of constraint ¢ may persist over non-point intervals. H :
d G 12129 = 13129
Model-Checking DC Properties with Uppaal Model-Checking Invariants with Uppaal Content
“For every complex problem there is an answer that is clear, simple, and wrong” o Ad-hoc fix: measure duration explicitly, transform A by ¢ A satisfaction relation between timed automata

and DC formulae

Can't we directly check \ |= F for o observables of timed automata

o F=0O[off| and F=-0[light] V@l to

e evolution induced by computation path

by checking queries and obtain A" (4 « Asimple and wrong solution
< VOLoff and 30 Llight?) Lo ad-hoc fix for invariants
® 0]) Then check o Testable DC Properties
<<~m=. we have N |= VO L.off implies F =[[off], but not vice versa, T@K N EVO(z>0 = P) T observer construction
5 s 2 (s 2 5 oy 2.2 (5 2 tovery (o)
= 022 25 T .25 T 25 T ,2.5 19 135 10
0 2520 = (rIVI\L 002575 (7)35 NEO[P].
T 1
Ze
bright T@\
light
off + + + + + + +

o 1 2 3 4 5 6 7 [ime H H

1529

Testability Testability

ion 6.1. A DC formula F is called testable if an observer (or Definition 6.1. A DC formula F is called testable if an observer (or
_test automaton (or monitor)) Ay exists such that for all networks A" = test automaton (or monitor)) Ap exists such that for all networks A =
C(Ay,..., Ay) it holds that C(Ay, ..., Ay,) itholds that
Testable DC Properties NRF iff (C(A, AL\E®V¥T5<DJ§??&V NEF iff CAL,..., A\ Ap) = YO -(Ar.graa)
for some A;. for some A;.

Otherwise F is called untestable. Otherwise Fis called untestable.

Theorem 6.4. DC implementables are testable.

3 H Proposition 6.3. There exist untestable DC formulae.

¢ 1759 * 1779

Testable DC Formulae Proof of Theorem 6.4: Preliminaries Proof of Theorem 6.4: Sketch
« Note: DC does not refer to communication between TA in the network, but only to « Example: [7] p [
Theorem 6.4. DC implementables are testable. data variables and locations.
Example: 0([v = 0]; [=1])

]
il

[V [x]; true Recall: transitions of TA are only triggered by syncronisation,
« Sequencing: [7] — [rVm V- V] not by changes of data-variables.

+ Progress: G « Approach: have auxiliary step action. A N

[7 Al =5 [-n]

<o Technically, replace each location
[~ali[mne] =5 [avm V.Vl
[-n]:i[mApl—[rVm V- V]

[m Al Ms [rvm V- vm]

[A@l—o[mVm V-V with

Proof Sketch:

o For each implementable I, construct Ap.
« Prove that A is a test automaton.
© Note: the observer will consider data variables after all updates. i

1929 20

Counterexample Formulae

* A counterexample formula (CE for short) is a DC formula of the form:

true; ([m]AL€);...;([mk] ALE L) ; true
wherefor1 <i <k,
* m; are state assertions,

« I; are non-empty, and open, half-open, or closed time intervals of
the form

o (be)or[be)withb € Qf ande € Qf U {oc},
o (b.e]or[be] withb,e € Q.
(b, 00) and [b, oc) denote unbounded sets.

o Let F be a DC formula. A DC formula Fy; is called counterexample
formula for Fif = F <= —(Fcg) holds.

Theorem 6.7. CE formulae are testable.

Untestable DC Formulae Cont’d

Consider the following time points:

o tgi=1

o tp=tatohnfori=1,... n+1

o tp €ty +1— it + 1+ i [fori=1,...n 41
with ti, — ti, # 1for1 <i<n+1.

Example: n =3
_—

21

Untestable DC Formulae Conslenin D/ agiac

-

COnninibract
¢

—
&
“Whenever we observe a change from A to —A attime ¢ 4,
the system has to produce a change from B to —B at some time ¢ € [ta,t4 + 1]anda
change from C'to ~C' attime t5 + 1.”

Untestable DC Formulae Cont’d

Consider the following time points:

o tai=1
oty i=tat g fori=1...n+1
o tp € Mt 1= gyt L gy [fori=1,0 n+1

with tp, —tjp #1for1 <i<n+1.

Example: n =3

¢
T —
1
Sketch of Proof: Assume there g,:nr that, for all networks AV, we have)
1 4
NEF iff A Ar) = VO ~(Ar-Goad) Bz B
Assume the number of clocks in Ap is n € INy. QN_V 2
i 3 0 1ty 6 thoub 2 f k3 Time
& 22 & 23
T L)
Untestable DC Formulae Cont’d B = Untestable DC Formulae Cont’d B e
5 = 5 ==
[
Example:n = 3 < Example:n = 3 ‘ /ﬂ

« The shown interpretation 7 satisfies the assumption of the property.
Ithas n + 1 candidates to satisfy the commitment.

By choice of t{., the commitment is not satisfied; so F is not satisfied.
Because A is a test automaton for F, is has a computation path to gpag.

.

Because n = 3, Ar can notsave all n + 1 time points t};.
« Thus theres 1 < iy < n such thatall clocks of Ay have a valuation which is not in

i i 2
2-t3 + (-)

Time

o 1ty fy fhae & & 3

Because A is a test automaton for ¥, is has a computation path to gsaq.

Thus thereis 1 < ig < n such that all clocks of A have a valuation which is not in

215 + 1y)

Modify the computation to 7’ such that 2 := t}¢ + 1.
ThenZ' = F, but A reaches g, via the same path
Thatis: Ar claims 7'~ F.

» « Thus A is not a test automaton. Contradiction. 2
» i 2

Content

References

Tell Them What You've Told Them. ..

« A satisfaction relation between timed automata © For testable DC formulae F, we can automatically verify
and DC formulae whether a network " satisfies F'.

(s observables of timed automata « by constructing an observer automaton
s evolution induced by computation path

« and transforming A appropriately.

« Asimple and wrong solution. » There are untestable DC formulae.
« ad-hoc fix for invariants (Everything else would be surprising.)

Testable DC Properties
« observer construction
« untestable DC properties

.

Olderog, E-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

29

References

2825

