- 8 - 2017-11-23 - main -

- 8 - 2017-11-23 - main -

Real-Time Systems

Lecture 8: DC Implementables |

2017-11-23

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Content

Introduction

Duration Calculus (DC) v
« Semantical Correctness Proofs+”
« DC Decidability~

obs : Time — Z(obs

. Automaé%&rification../

o Timed’Automata (TA), Uppaal
o Networks of Timed Automata
egion/Zone-Abstraction

TA model-checking

Extended Timed Automata
Undecidability Results

A
bSO, l/0>,t0 —0) <0b51,

..whether a TA satisfies a DC formula, observer-based

o Recent Results:

o Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or ...

23/49

2/36

-8 -2017-11-23 - Scontent -

- 8 - 2017-11-23 - main -

Content

e Motivation: Why DC Implementables?

o What can we assume of controller platforms?

o DC Standard Forms

o Followed-by, Followed-by-initially
o (Timed) Leads-to
o (Timed) Up-to, (Timed) Up-to-initially

o Control Automata

e phases, basic phases

e DCImplementables
e Initialisation, Sequencing, Progress
e Synchronisation, (Un)Bounded Stability
o (Un)Bounded Initial Stability

o Example:

A correct controller for the Gas Burner
specified by DC Implementables

DC Implementables: Motivation

3736

4/36

Requirements vs. Implementations

-8-2017-11-23- S

o Problem: in general, a DC requirement doesn't tell how to achieve it,
how to build a controller/write a program which ensures it.

(LB, = (L=t
“whenever a pedestrian presses the button 5 time units from now,
then now the traffic lights should already be yellow”

Plus: road traffic should not see ‘yellow’ all the time.

O(([BAL=green];{=5) = (true; [L = red]))

“whenever a pedestrian presses the button now while road traffic sees ‘green,

then 5 time units later (the latest) road traffic should see ‘red’”

Requirements vs. Implementations

- 8- 2017-11-23 - Simplmotiv -

o Problem: in general, a DC requirement doesn't tell how to achieve it,
how to build a controller/write a program which ensures it.

e What a controller (clearly) can do is:

e consider inputs now,

o change (local) state, or [sensors | ol
controller
o wait, W

e set outputs now.

(But not, e.g., consider future inputs n

e So, if we have

e aDCrequirement ‘Req’,
e adescription ‘Impl’in DC of the contro

which “uses” just these four operatj
then

e proving correctness (still) amounts to proving =9 Impl = Req (in DC)

e and we (more or less) know how to program (the correct) ‘Impl’
in a PLC language, or in C on a real-time OS, or or or...

5/36

5/36

Approach: Control Automata and DC Implementables

- 8- 2017-11-23 - Simplapproach -

- 8 - 2017-11-23 - main -

Plan:
e Introduce DC Standard Forms (a sub-language of DC)

o Introduce Control Automata

e Introduce DC Implementables as a subset of DC Standard Forms

e Example: a correct'controller design for the notorious Gas Burner

DC Standard Forms

6/36

7736

DC Standard Forms: Followed-by

- 8-2017-11-23 - Sdestdforms -

In the following: F'is a DC formula, P a state assertion, ¢ a rigid term.

o Followed-by:
F — [P] <= —0(F; [-P]) < O=(F; [-P])
1 N~ T — —m ——
in other symbols

onD(((F/\sz):@):((_F//\Z;x):[P];true

8/36

DC Standard Forms: Followed-by

- 8- 2017-11-23 - Sdcstdforms -

In the following: F'is a DC formula, P a state assertion, § a rigid term.

o Followed-by:
F — [P] <= —0(F; [-P]) < O=(F; [-P])
in other symbols

VeeO(FAL=2);{>0 = (FAL=2x);[P]; true)

F — [P]

&0

=
C=» e

o —
Lo q !

8/36

DC Standard Forms: Followed-by Examples

T=TPT veeO(FAL=2)il>0 = (FAL=2z);[P]; true)

=
[~

Q1 — [P?
Qr ;
P 1
z 0
| [
ll) ‘,l />0
—
fe T

DC Standard Forms: Followed-by Examples

936

VeeO(FAL=2x);L>0 = (FAL=ux);[P];true)

[Ql — [QVP]?

S = O =

Pr

Sian]

VML |
X _

10/36

DC Standard Forms: Followed-by Examples

F— TP VeeO(FAL=2);£>0 = (FAL=ux);[P];true)

e —

T

([Q1 A £=1) — [P]?

— a—

Qz

o = O =

Pr

-

DC Standard Forms: (Timed) leads-to

o (Timed) leads-to:

F -2 [P e (FAL=0) — [P]

[Ql — [P]?

Qr

(= =

Pr

11736

12736

DC Standard Forms: (Timed) leads-to

- 8-2017-11-23 - Sdestdforms -

o (Timed) leads-to:
F-% [P e (FAL=0) — [P]

[Q] — [P]?

= 11—

Qr

Ty
5

Pr

(= =

“if F persists for (at least) 6 time units from time ¢,
then there is [P] after 6 + ¢”

12736

DC Standard Forms: (Timed) up-to

- 8- 2017-11-23 - Sdcstdforms -

VeeO(FAL=2x);L>0 = (FAL=ux);[P];true)

e (Timed) up-to:

F =5 [P = (FAL<6) — [P]

1
Qr o :
| :
1 =
Pr l i
0 '. :
| i |
b { ral] Cu e
<

13736

DC Standard Forms: (Timed) up-to

VeeO(FAL=2x);L>0 = (FAL=uzx);[P];true)

e (Timed) up-to:
F =% [P ie= (FAL<0) — [P

[Q1 =% [P)?

Pr

o = O K

1336

DC Standard Forms: (Timed) up-to

VeeO(FAL=2x);L>0 = (FAL=ux);[P];true)

e (Timed) up-to:

F =5 [P = (FAL<6) — [P]

—_

_f.
(1-Q1:7Q) =% P2
. —
Qz o ,:
1 |
Pr —
| R '
II) [l Ar11424 (Ii
N

14/36

DC Standard Forms: (Timed) up-to

- 8-2017-11-23 - Sdestdforms -

VeeO(FAL=2x);L>0 = (FAL=uzx);[P];true)

e (Timed) up-to:

F =5 [P = (FAL<6) — [P

[-Q1: [Q] =5 [P]?

o = O K

Pr

| |
[[
b e

“Ruy
“during all @-phases of at most 6 time units,
there needs to be [P] as well”

DC Standard Forms: Initialisation

- 8- 2017-11-23 - Sdcstdforms -

o Followed-by-initially:
F — [P] :<= ~(F; [~P])

[P AQ]—0[P]

Qz

o = o =

Pr

| |
[
b e

“after an initial phase with [P A Q], [P] persists for some non-point interval”
o (Timed) up-to-initially:
F =%, [P = (FAL<0) —s [P
o Initialisation:

. [TV [P]; true
| —

14/36

15/36

- 8 - 2017-11-23 - main -

Control Automata

16/36

Control Automata

- 8-2017-11-23 - Sctrlaut -

o Let X, ..., X be state variables with finite domains D(X}), ..., D(Xg).

e Xi,..., X} together with a DC formula ‘Impl’ (over X1, ..., X;)
is called system of £ control automata.

e ‘Impl’is typically a conjunction of DC implementables. (— in a minute)
shde var po) (X)
/

Example: (Simplified) traffic lights: X : {red, green, yellow},

{Impl ::L(Eei—ﬂ\red\/green]\)_' A (Lfgreenw — [green V yellow])

A W A ([TV [red] ; true) -
JXSJ&« 0{ 1 o/ awé\mq{y\,,

17736

Control Automata

-8-2017-11-23 - S

o Let X,..., X} be state variables with finite domains D(X}), ..., D(Xg).

e Xi,..., X} together with a DC formula ‘Impl’ (over X1, ..., X;)
is called system of % control automata.

o ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A ([green] — [green V yellow])
A ([yellow] — [yellow Vred]) A (] V [red]; true)

o Where's the automaton? Here, look:

@

Control Automata

- 8-2017-11-23 - Sctrlaut -

o Let X, ..., X be state variables with finite domains D(X}), ..., D(Xg).

e Xi,..., X} together with a DC formula ‘Impl’ (over X1, ..., X;)
is called system of & control automata.

e ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A ([green] — [green V yellow])
A ([yellow] — [yellow Vred]) A (] V [red]; true)

o Where's the automaton? Here, look:

red grn

()

17736

17736

Control Automata

trlaut

-8-2017-11-23 - S

o Let X,..., X} be state variables with finite domains D(X}), ..., D(Xg).

e Xi,..., X} together with a DC formula ‘Impl’ (over X1, ..., X;)
is called system of % control automata.

o ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A (|green] — [green V yellow])
A ([yellow] — [yellow Vred]) A (] V [red]; true)

o Where's the automaton? Here, look:

e

Control Automata

1-23 - Sctrlaut -

-8-2017-1

o Let X, ..., X be state variables with finite domains D(X}), ..., D(Xg).

e Xi,..., X} together with a DC formula ‘Impl’ (over X1, ..., X;)
is called system of & control automata.

e ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A ([green] — [green V yellow])
A ([yellow] — [yellow Vred]) A (] V [red]; true)

o Where's the automaton? Here, look:

red grn

17736

17736

Control Automata

-8-2017-11-23 - S

o Let X,..., X} be state variables with finite domains D(X}), ..., D(Xg).

e Xi,..., X} together with a DC formula ‘Impl’ (over X1, ..., X;)
is called system of % control automata.

o ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A ([green] — [green V yellow])
A ([yellow] — [yellow Vred]) A (][] V [red]; true)

o Where's the automaton? Here, look:

red grn

Control Automata

o Let X, ..., X be state variables with finite domains D(X}), ..., D(Xg).

e Xi,..., X} together with a DC formula ‘Impl’ (over X1, ..., X;)
is called system of & control automata.

e ‘Impl’is typically a conjunction of DC implementables. (— in a minute)

Example: (Simplified) traffic lights: X : {red, green, yellow},

Impl := ([red] — [red V green]) A ([green] — [green V yellow])
A ([yellow] — [yellow Vred]) A (] V [red]; true)

o Where's the automaton? Here, look:

red grn

17736

17736

trlaut

-8-2017-11-23 - S

8 -2017-11-23 - main

Phases

o A state assertion of the form
Xi = di, di S D(Xl),

which constrains the values of X, is called basic phase of X.
—

o A phase of X; is a Boolean combination of basic phases of X;.

e Abbreviations:
o Write X instead of X; = 1, if X is Boolean.
o Write d; instead of X; = d,, if D(X;) is disjoint from D(X;), i # j.

e Examples
o Basic phases of X: (X = green> (green) (red) (yellow)
e Phases of X: (X =greenV X = yeIIow) (green v yeIIOV\b (jred)

¢ Mt & phase (X = LA B:maed)
[Lept 055?/{\\:54:(25]

DC Implementables

18736

19/36

DC Implementables

- 8-2017-11-23 - Simr

...are special patterns of DC Standard Forms (due to A.P. Ravn).
Within one pattern,

o T,M1,..., Ty, n > 0, denote phases of the same state variable X,
e denotes a state assertion not depending on X;;.
e 0 denotes arigid term.

Initialisation: [TV [7]; true

“initially, the control automaton is in phase 7"

Sequencing: [7] — [7V LV Vg,

“when the control automaton is in , it subsequently stays in 7 or moves to one of 71, ... 7"

Progress: [7] N [—7]

“after the control automaton stayed in phase 7 for 6 time units,
is subsequently leaves this phase, thus progresses”

20y36

DC Implementables Cont’d

- 8-2017-11-23 - Sim

e Synchronisation: [A @] N [—7]

“after the control automaton stayed for 6 time units in phase 7
with the condition ¢ being true, it subsequently leaves this phase”

e Bounded Stability:

[~r][r A Q] S5 [rVm VeV,

“if the control automaton changed its phase to 7 with the condition ¢ being true
and the time since this change does not exceed 6 time units,
it subsequently stays in 7 or moves to one of 71, ..., 7"

¢ Unbounded Stability:

[-7];[rApl—[nVmL V- Vr,]

“if the control automaton changed its phase to 7 with the condition ¢ being true, it
subsequently stays in 7 or moves toone of 71, ..., 7"

21736

DC Implementables Cont’d

-8-2017-11-23- S

¢ Bounded initial stability:

[T A @] =% [TV VeV,

“when the control automaton initially is in phase 7 with condition ¢ being true
and the current time does not exceed ¢ time units,
the control automaton subsequently stays in 7 or moves to one of 71, ..., 7"

¢ Unbounded initial stability:

[T Ap]l—o[m VT V-V,

“when the control automaton initially is in phase 7 with condition ¢ being true,
the control automaton subsequently stays in 7 or moves to one of 71, ..., 7"

2236

Using DC Implementables for (Controller) Specifications

- 8-2017-11-23 - Simpl -

e Let Xy,..., X} be asystem of i control automata.
e Let ‘Impl" be a conjunction of DC implementables.

e Then ‘Impl specifies / denotes all interpretations Z of X, ..., Xk
and all valuations V such that Z, V = Impl

e In other words: ‘Impl’ denotes the set {(Z,V) | Z,V =¢ Impl}
of interpretations and valuations which realise ‘Impl’ from 0.

e Controller Verification:
If ‘Impl” describes (exactly or over-approximating) the behaviour of a controller,
then proving the controller correct wrt. requirements ‘Req” amounts to showing

Eo Impl = Req

o Controller Specification: Dear programmers,
‘Impl’ describes my design idea (and | have shown =g Impl = Req),
please provide a controller program whose behaviour is a subset of ‘Impl’;
that is: a correct implementation of my design.

2336

- 8 - 2017-11-23 - main -

Example: Gas Burner

24/36

- 8-2017-11-23 - Sexa -

Control Automata for the Gas Burner 7 /?
A gas burner controller can be modelled [“sensors |
as a system of four control automata: conteoler
e inputs / sensors: 4 =

e H :{0,1} - heating request
e F:{0,1} - flame sensor
implementables constraining phases of /7, F* express environment assumptions;
H, F in controller implementables correspond to reading sensor values,
e outputs / actuators:
e G:{0,1} —gas valve
implementables constraining phases of G
describe the connection between controller states and actuators.
e local state / controller:
e C :{idle, purge,ignite, burn},

to produce the desired behaviour, the controller makes use of four local states.

25/36

Gas Burner Controller: Control State Changes

| C' : {idle, purge, ignite, burn}

[TV [idle] ; true (Init-1)
[idle] — [idle V purge] (Seqg-1)
[purge] — [purge V ignite] (Seqg-2)
[ignite] — [ignite V burn] (Seq-3)
[burn] — [burn V idle] (Seq-4)
26/36
Gas Burner Controller: Control State Changes
| C : {idle, purge, ignite, burn} |
[1V Jidle] ; true (Init-1)
[idle] — [idle V purge] (Seqg-1)
[purge] — [purge V ignite] (Seqg-2)
[ignite] — [ignite V burn] (Seq-3)
[burn] — [burn V idle] (Seq-4)

N

26/36

Gas Burner Controller: Control State Changes

| C' : {idle, purge, ignite, burn}

[1V [idle]; true (Init-1)
[idle] — [idle \V purge] (Seqg-1)
[purge] — [purge V ignite] (Seqg-2)
[ignite] — [ignite V burn] (Seq-3)
[burn] — [burn V idle] (Seq-4)
N
<
26736
Gas Burner Controller: Control State Changes
| C : {idle, purge, ignite, burn} |

[TV [idle] ; true (Init-1)
[idle] — [idle V purge] (Seqg-1)
[purge] — [purge V ignite] (Seqg-2)
[ignite] — [ignite V burn] (Seq-3)
[burn] — [burn V idle] (Seq-4)

|-
purge

26/36

Gas Burner Controller: Control State Changes

| C' : {idle, purge, ignite, burn}

[TV [idle] ; true (Init-1)

[idle] — [idle V purge] (Seqg-1)

[purge] — [purge V ignite] (Seqg-2)

[ignite] — [ignite V burn] (Seq-3)

[burn] — [burn V idle] (Seq-4)

26/36
Gas Burner Controller: Control State Changes
| C' : {idle, purge, ignite, burn} |

[TV [idle] ; true (Init-1)

[idle] — [idle V purge] (Seqg-1)

[purge] — [purge V ignite] (Seqg-2)

[ignite] — [ignite V burn] (Seq-3)

[burn] — [burn V idle] (Seq-4)

26/36

Gas Burner Controller: Control State Changes

- 8-2017-11-23 - Sexa -

| C' : {idle, purge, ignite, burn}

[1V [idle] ; true (Init-1)

[idle] — [idle V purge] (Seqg-1)
[purge] — [purge V ignite] (Seq-2)
[ignite] — [ignite V burn] (Seqg-3)
[burn] — [burn V idle] (Seq-4)

- 8-2017-11-23 - Sexa -

26736
Gas Burner Controller: Timing Constraints
[—purge] ; [purge] = [purge] (Stab-2)
[purge] 0+t [—purge] (Prog-1)

“after changing to ‘purge, stay there for at least 30 time units (or: leave after 30 the earliest);
you may stay in ‘purge’ for at most 30 + ¢ time units”

27736

Gas Burner Controller: Timing Constraints

- 8-2017-11-23 - Sexa -

m [—purge] ; [purge] = [purge] (Stab-2)
[purge] 30+¢ [—purge] (Prog-1)

“after changing to ‘purge, stay there for a 30 time units (or: leave after 30 the earliest);
you may stay in ‘purge Yor at most 30 + ¢ time units”

%

- 8-2017-11-23 - Sexa -

27/36
Gas Burner Controller: Timing Constraints
[—purge] ; [purge] = [purge] (Stab-2)
[purge] 0+t [—purge] (Prog-1)
“after changing to ‘purge, stay there for at least 30 time units (or: leave after 30 the earliest);
you may stay in ‘purge’ for at most 30 + ¢ time units”
- .. 2 <05 .
[—ignite] ; [ignite] = [ignite] (Stab-3)
[ignite] ks [—ignite] (Prog-2)

27736

Gas Burner Controller: Inputs

[idle A H]— [~idle] (Syn-1)

[burn A (=H V =F)]—=» [=burn] (Syn-2)
[—idle] ; [idle A ~H]— idle] (Stab-1)

[idle A =H|—>¢ [idle] (Stab-1-init)

[—burn]; [burn A H A F|— [burn] (Stab-4)

28/36
Gas Burner Controller: Inputs
[idle A H]—= [—idle] (Syn-1)
[burn A (=H V —~F)]— [—burn] (Syn-2)
[—idle] ; [idle A ~H]— Tidle] (Stab-1)
lidle A ~H]— [idle] (Stab-1-init)
[—burn]; [burn A H A F]— [burn] (Stab-4)

28/36

Gas Burner Controller: Inputs

[idle A H|— [—idle]
[burn A (=H V —F) [—burn]

[idle A = H|— [idle]

|

1=

[—idle] ; idle A ~H]— [idle]
|

[—burn]; [burn A H A F|— [burn]

Gas Burner Controller: Inputs

lidle A H]— [-idle]
[burn A (=H V =F)]—=+ [=burn]
[idle] ; [idle A ~H]— Tidle]
[idle A =H]— [idle]
[—burn]; [burn A H A F]— [burn]

-H

H
<

(Syn-1)
(Syn-2)
(Stab-1)
(Stab-1-init)
(Stab-4)

28/36

(Syn-1)
(Syn-2)
(Stab-1)
(Stab-1-init)
(Stab-4)

28/36

Gas Burner Controller: Inputs

- 8-2017-11-23 - Sexa -

[idle A H]— [~idle]
[burn A (=H V =F)]—=» [=burn]
[—idle] ; [idle A ~H]— idle]
[idle A = H|— [idle]
[—burn]; [burn A H A F]— [burn]

-H

Gas Burner Controller: Inputs

- 8-2017-11-23 - Sexa -

lidle A H]— [—idle]
[burn A (=H V =F)]—=+ [=burn]
[—idle] ; [idle A ~H]— idle]
[idle A =H]—>¢ [idle]
[—burn]; [burn A H A F]— [burn]

-H

H
<e

(Syn-1)
(Syn-2)
(Stab-1)
(Stab-1-init)
(Stab-4)

28/36

(Syn-1)
(Syn-2)
(Stab-1)
(Stab-1-init)
(Stab-4)

28/36

Gas Burner Controller: Outputs

- 8-2017-11-23 - Sexa -

- 8-2017-11-23 - Sexa -

| G :{0,1}
T P T
[. /
[G A (idle V purge) | — [-G] (Syn-3)
[-G A (ignite V burn)]—= [G] (Syn-4)
[G]; [-~G A (idle V purge)|— [-G] (Stab-6)
[-G A (idle V purge)]—0 [-G] (Stab-6-init)
[-G]; [G A (ignite V burn)]— [G] (Stab-7)
idle V purge
ignite V burn <e idle V purge
<e
ignite V burn
29736
Gas Burner Controller: Environment Assumptions
| G :{0,1} |
[TV [-G]; true (Init-4)

30736

Gas Burner Controller: Environment Assumptions

-8-2017-11-23 - Sexa -

G:{0,1}

ignite V burn

[TV [-G]; true

idle V purge

<e

<e
ignite V burn

idle V purge

Gas Burner Controller: Environment Assumptions

- 8-2017-11-23 - Sexa -

(Init-4)

30736

G:{0,1}

ignite V burn

[TV [-G]; true

idle V purge

<e

<e
ignite V burn

idle V purge

(Init-4)

30736

Gas Burner Controller: Environment Assumptions

-8-2017-11-23 - Sexa -

| G :{0,1} |

[TV [-G]; true (Init-4)

idle V purge

<e

ignite V burn idle V purge

<e
ignite V burn

30736

Gas Burner Controller: Environment Assumptions

- 8-2017-11-23 - Sexa -

| H:{0,1} |

[TV [-H]; true (Init-2)

3136

Gas Burner Controller: Environment Assumptions

| H:{0,1} |
(Init-2)
3136
Gas Burner Controller: Environment Assumptions
| H:{0,1} |
[1V [—H]; true (Init-2)

ORI

3136

Gas Burner Controller: Environment Assumptions

| F:{0,1} |
[1V [~F]; true (Init-3)
[F]; [~F A —ignite] —s [~F] (Stab-5)
[—F A —ignite] —o [—F] (Stab-5-init)
32/36
Gas Burner Controller: Environment Assumptions
| F:{0,1} |
[1V [~F]; true (Init-3)
[F]; [-F A —ignite] — [—F] (Stab-5)
[~F A —ignite] —sq [~F] (Stab-5-init)

OGO

3236

Gas Burner Controller: Environment Assumptions

| F:{0,1} |
[TV [-F]; true (Init-3)
[F]; [-F A —ignite] — [~F] (Stab-5)
[—F A —ignite] —o [~ F] (Stab-5-init)

ORNO

3236

Gas Burner Controller: Environment Assumptions

| F:{0,1} |
[1V [~F]; true (Init-3)
[F]; [-F A —ignite] — [-F] (Stab-5)
[—F A —ignite] — [—F] (Stab-5-init)

—ignite

O

3236

Gas Burner Controller: Environment Assumptions

- 8-2017-11-23 - Sexa -

| F:{0,1}
[TV [-F]; true (Init-3)
[F]; [-F A —ignite] — [-F] (Stab-5)
[—F A —ignite] — [-F] (Stab-5-init)
g Lo —ignite
ignite
*7(00&7[(

- 8-2017-11-23 - Sgbspec -

32/36
Gas Burner Controller: The Complete Specification
Gas Valve: (output)
Controller: (local)
[V fidle] ; true, (Init-1) [TV i=6] ’:m (Init-4)
[idle] — Tidle V purge] (Seg-1) [G A (idle V purge)| — [-G] (Syn-3)
[purge] — [purge V ignite] (Seq-2) [-G A (ignite V burn)] == [G] (Syn-4)
[ignite] — [ignite VV burn] (Seg-3) [G]; [~G A (idle V purge)] — [-G]
[burn] — [burn V idle] (Seq-4) (Stab-6)
80+ _ [—G A (idle V purge)] —o [~G]
pure] 5 [purse] - (Frog (S
[ignite] == [~ignite] (Prog-2) [~G1: [G A (ignite V burn)] —» [G]
[—purge] ; [purge] =3 [purge] (Stab-2) (Stab-7)
[—ignite] ; [ignite] = [ignite] (Stab-3) Heating Request: (input)
lidle A H] - [—idle] (Syn-1) T [~H] s true, (nit-2)
[burn A (=H V —=F)] —=5 [=burn] (Syn-2)
[—idle] ; [idle A ~H] —> [idle] ~ (Stab-1) Flame: (input)
|—Id|e N “H.l —0 ’—Id|e1 (Stab—1-init) |"| Vi |’_‘F‘| :true, (|n|t—3)

[=burn]; [burn A H A F| — [burn]

(Stab-4)

[F]; [-F A —ignite] — [-F] (Stab-5)
|——\F/\ —dgnite} —0 ’VﬁF“ (Stab-5-init)

33/36

Tell Them What You’ve Told Them. . .

- 8 - 2017-11-23 - Sttwytt -

- 8 - 2017-11-23 - main -

Controller hardware platforms can
e read inputs, change local state,

e wait, write outputs.

If we limit controller behaviour descriptions
to these “operations’, there’s (at least) no
principle obstacle to implement the design.

One such limited specification language:

e DCImplementables,
e aset of patterns of DC Standard Forms.

DC Implementables basically corffrain:

o local state changes, synchronisation with inputs
o and outputs, timed stability and progress

This is sufficient to formalise a correct (safe)
Gas Burner controller design specification.

3436

References

3536

References

-8 -2017-11-23 - main -

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.

36/36

