Real-Time Systems

Lecture 14: Regions and Zones

2017-12-21

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Recall: Number of Regions

Wanted: Zones instead of Regions

• In $\mathcal{R}(\mathcal{L})$ we have transitions:

 $\begin{array}{ccc} \bullet & \bigoplus \\ \{0\} \rangle & \xrightarrow{press^2} \langle \bigoplus, \{0\} \rangle, & \langle \bigoplus, \{0\} \rangle & \xrightarrow{press^2} \langle \bigoplus, (0, 1) \rangle, \\ \bullet & \dots \end{array}$

 $\bullet \ \left\langle \underbrace{\operatorname{op}}, \left\{0\right\}\right\rangle \xrightarrow{\operatorname{press}^2} \left\langle \underbrace{\operatorname{cop}}, \left\langle 2, 3\right\rangle \right\rangle, \quad \left\langle \left(\operatorname{op}, \left\{0\right\}\right\rangle \xrightarrow{\operatorname{press}^2} \left\langle \operatorname{cop}, \left\{3\right\}\right\rangle$

Which seems to be a complicated way to write just:

 $\langle (\hspace{-1mm}) \hspace{-1mm} \langle \hspace{-1mm} \rangle , \{0\} \rangle \xrightarrow{press?} \langle \hspace{-1mm} \langle \hspace{-1mm} \rangle \rangle, [0,3] \rangle$

Can't we constructively abstract L to:

 $\begin{array}{c|c} \langle \bigodot \{0\} \rangle & \underline{press?} & \langle \bigodot \{0\} \rangle & \underline{press?} & \langle \bigodot \{0,3\} \rangle \\ & \underline{press?} & \underline{press?} & \underline{press?} \\ & \bigcirc \{(3,\infty) \rangle & \underline{press?} & \bigcirc \{(0,\infty) \rangle \} \\ & & \bigcirc \{(0,\infty) \rangle & \underline{press?} & \underline{press?} \end{array}$

Lemma 4.28. Let X be a set of clocks, $c_x\in\mathbb{N}_0$ the maximal constant for each $x\in X,$ and $c=\max\{c_x\mid x\in X\}.$ Then is an upper bound on the number of regions. $(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}$

In the desk lamp controller,

many regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that its actually only important whether $\nu(x) \in [0,3]$ or $\nu(x) \in (3,\infty)$.

So: it seems like there are even equivalence classes of undistinguishable regions in certain timed automata.

Content

Motivation: Sometimes, regions seem to o fine-grained

(e Examples: Zone or Not Zone Definition

Zone-based Reachability Analysis
 The basic algorithm
 Building blocks
 Post-operator,
 subsumption check

(Presentation following Franzle (2007)) Zones

-(* A symbolic Post-operator

Difference-Bounds-Matrices (DBMs)

Discussion: Zones vs. Regions

Motivation:
 Sometimes, regions seem too fine-grained

Content

Definition
 Examples: Zone or Not Zone

Zone-based Reachability Analysis
 The basic algorithm.
 Building blocks
 Post-operator,
 subsumption check

A symbolic Post-operator

Difference-Bounds-Matrices (DBMs)
 Discussion: Zones vs. Regions

What is a Zone?

Zone-based Reachability Analysis

Content

 ■ Definition
 □ Examples: Zone or Not Zone Zone-based Reachability Analysis
 The basic algorithm.
 Building blocks

Motivation: Sometimes, regions seem too fine-grained

Then $\ell \in L$ is reachable in $\mathcal A$ if and only if • by taking edge $e=(\ell,\alpha,\varphi,Y,\ell')\in E$.

ullet zone z' denotes exactly those clock valuations u'- which are reachable from a configuration $\langle \ell, \nu \rangle$, $\nu \in z$,

 Difference-Bounds-Matrices (DBMs) Discussion: Zones vs. Regions

e Post-operator, e A symbolic Post-operator

 $\text{Post}_{e_n}(\ldots(\text{Post}_{e_i}\left(\ell_{\textit{ini}},z_{\textit{ini}}\right))\ldots)) = \langle \ell,z\rangle$ for some $e_1,\ldots,e_n \in E$ and some z.

What is a Zone?

is a clock zone by
$$\varphi=(x\le 2)\land (x>1)\land (y\ge 1)\land (y<2)\land (x-y\ge 0)$$

- * Note Each clock constraint φ is a symbolic representation of a zone. * But: There's no one-on-one correspondence between clock constraints and zones. The zone $z=\emptyset$ corresponds to $(x>1 \land x<1), (x>2 \land x<2),...$

Stocktaking: What's Missing?

```
• Set R:=\{\{\ell_{mi},z_{mi}\}\}\subset L\times {\sf Zones}

• Repeat

• pick
until no more such \langle \ell,z\rangle\in R and e\in E are found.
                                                such that \mathrm{Post}_a((\ell,z)) is not already subsumed by R * add \mathrm{Post}_a((\ell,z)) to R
                                                                                                                                                \bullet \  \, \text{a pair } (\ell,z) \  \, \text{from} \, R \, \text{and} \bullet \  \, \text{an edge} \, \, e \in E \, \text{with source} \, \ell
```

Note: The algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants c_x into account (not in lecture).

```
• Algorithm to effectively compute \mathrm{Post}_e(\langle\ell,z\rangle) for a given configuration \langle\ell,z\rangle\in L\times \mathrm{Zones} and an edge e\in E.
- Decision procedure for whether configuration \langle\ell',z'\rangle is subsumed by a given subset of L\times {\sf Zones}.
```

What is a Good "Post"?

```
• If z is given by a constraint \varphi \in \Phi(X), (write: z = [\![\varphi]\!]) then the zone component z' of \operatorname{Post}_v(\ell,z) = \langle \ell',z' \rangle should also be a constraint from \Phi(X).
```

Good news: the following operations can be carried out by manipulating φ . $\uparrow^{\chi_{1}, \eta_{1}, \eta_{2}, \eta_{1}, \eta_{2}, \eta_{2}, \eta_{2}}$

(We want to manipulate constraints, not those unhandy sets of clock valuations.)

```
(1) The elapse time operation:
, operations ..... \uparrow: \quad \text{Zones} \rightarrow \text{Zones} \\ \uparrow: \quad \text{Zones} \rightarrow \text{Zones} \\ z \mapsto \{\nu + t \mid t \in \text{Time}\} \qquad \uparrow_{\overline{k}}: \qquad
```

can be carried out symbolically as follows:

This procedure defines $\uparrow: \Phi(X) \to \Phi(X)$ (a function on clock constraints), such that $[\varphi \uparrow] = z \uparrow$ if $z = [\varphi]$.

• Let $z=[\varphi].$ • Obtain φ' by removing all upper bounds $x\leq c, x< c$, from φ and adding diagonals. • Then $[\varphi']=z\uparrow$.

This is Good News...

...because given $\langle \ell,z \rangle = \langle \ell, [\![\varphi_0]\!] \rangle$ and $e = (\ell,\alpha,\varphi,\{y_1,\ldots,y_n\},\ell') \in E$ we have

 $\operatorname{Post}_e(\langle \ell, z \rangle) = \langle \ell', \llbracket \varphi_5 \rrbracket \rangle \qquad (\operatorname{symbolical} \cdot \operatorname{Post}_e(\langle \ell, \varphi_0 \rangle) = \langle \ell', \varphi_5 \rangle)$

 $\bullet \ \, \varphi_4=\varphi_3[y_1:=0]\dots[y_n:=0]$ reset clocks: $\ \, \varphi_4$ are all possible outcomes of taking e from $\varphi_3.$

intersect with guard: in φ_3 are the reachable "good" valuations where e is enabled. intersect with invariant of $\ell : \varphi_2$ represents the "good" valuations reachable from φ_1

• $\varphi_5 = \varphi_4 \wedge I(\ell')$

intersect with invariant of $\ell'\colon \varphi_5$ are the "good" outcomes of taking e from φ_3 .

• $\varphi_1=\varphi_0\uparrow$ let time elapse starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

Good News Cont'd

```
Good news: the following operations can be carried out by manipulating \varphi.
```

(1) elapse time: $\varphi \uparrow$ with $[\![\varphi \uparrow]\!] = z \uparrow$ if $z = [\![\varphi]\!]$.

(2) zone intersection: if $z_1=\llbracket\varphi_1\rrbracket$ and $z_2=\llbracket\varphi_2\rrbracket$, then $\llbracket\varphi_1\wedge\varphi_2\rrbracket=z_1\cap z_2$.

(3) clock reset:

can be carried out symbolically by setting $\begin{array}{ccc} \cdot [\; \cdot \; := 0] & : & \mathsf{Zones} \times X \to \mathsf{Zones} \\ & (z,x) \mapsto \{\nu[x := 0] \mid \nu \in z\} \end{array}$ $(\overset{\circ}{\circ} \overset{$

 $[\![\exists\, x.\varphi]\!] = \{\nu \mid \mathsf{there} \; \mathsf{is} \; t \in \mathsf{Time} \; \mathsf{such} \; \mathsf{that} \; \nu[x := t] \models \varphi\}$

using clock hiding (existential quantification):

 $\begin{array}{ccc} Example & \circ \varphi_1 = \varphi_0 \wedge \uparrow \\ & \circ \varphi_2 = \varphi_1 \wedge I / \downarrow & \text{intersect with invasianci } \ell \\ & \circ \varphi_2 = \varphi_1 \wedge \varphi & \text{intersect with guard} \\ & \circ \varphi_4 = \varphi_2 | g_1 := 0 | \dots | g_n := 0 | & \text{reset clocks} \\ & \circ \varphi_4 = \varphi_4 \wedge I / \ell') & \text{intersect with invariant of } \ell' \\ & \circ \varphi_5 = \varphi_4 \wedge I / \ell'') & \text{intersect with invariant of } \ell'' \\ \end{array}$ $\varphi_0 = 1 \le y \le 2$ $\land 1 \le x \le 3 \land x \ge y$

 $\begin{array}{ccc} Example & \circ \varphi_1 = \varphi_0 & & & & \text{let time dappse.} \\ & & \varphi_2 = \varphi_0 & & & & \text{intersect with invasitant ℓ} \\ & & \circ \varphi_1 = \varphi_0 & & & & \text{intersect with gaard} \\ & & \circ \varphi_1 = \varphi_0 [g_1 := 0] & ... [g_n := 0] & \text{reset clocks} \\ & \circ \varphi_1 = \varphi_0 & A[\ell'] & & \text{thersect with invariant of ℓ'} \\ \end{array}$

 $\varphi_0 = 1 \le y \le 2$ $\land 1 \le x \le 3 \land x \ge y$

 $\begin{array}{l} \varphi_1 = 1 \leq y \wedge 1 \leq x \\ \wedge x \geq y \wedge x \leq y + 2 \end{array}$

 $\varphi_0 = 1 \le y \le 2$ $\land 1 \le x \le 3 \land x \ge y$

 $\begin{array}{l} \varphi_1 = 1 \leq y \wedge 1 \leq x \\ \wedge x \geq y \wedge x \leq y + 2 \end{array}$

 $\begin{array}{l} \varphi_1 = 1 \leq y \wedge 1 \leq x \\ \wedge x \geq y \wedge x \leq y + 2 \end{array}$

 $\varphi_0 = 1 \le y \le 2$ $\land 1 \le x \le 3 \land x \ge y$

 $\varphi_2 = 1 \le y < 3 \land 1 \le x$ $\land x \ge y \land x \le y + 2$

 Discussion: Zones vs. Regions Difference-Bounds-Matrices (DBMs)

Difference Bound Matrices • Given a finite set of clocks X, a DBM over X is a mapping $\bullet \ M(x,y) = (\sim,c) \ {\rm encodes \ the \ conjunct} \ x-y \sim c \quad (x \ {\rm and} \ y \ {\rm can \ be} \ x_0).$ $M: (X \stackrel{.}{\cup} \{x_0\}) \times (X \stackrel{.}{\cup} \{x_0\}) \rightarrow (\{<,\leq\} \times \mathbb{Z}) \cup \{(<,\infty)\}$ disjoint weeks

<u>/</u> *

(4.27) (≤,5) → M(6,5)=(<,27) 5-46. = -2-2 5-76-2 = -2-2 5-76-4 = (6"x)H

Pros and cons

Content

- Zone-based reachability analysis usually is explicit wrt. discrete locations:
- maintains a list of location/zone pairs (or location/DBM pairs)
- confined wrt. size of discrete state space
 avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks

Zone-based Reachability Analysis
 The basic algorithm.
 Building blocks:

 Definition
 Examples: Zone or Not Zone Motivation:
 Sometimes, regions seem too fine-grained

 Discussion: Zones vs. Regions Difference-Bounds-Matrices (DBMs)

→ A symbolic Post-operator e subsumption check

- Region-based analysis provides a finite-state abstraction, amenable to finite-state symbolic model-checking
- less dependent on size of discrete state space
 exponential in number of clocks

20/24

Difference Bound Matrices

 $\bullet \;$ Given a finite set of clocks X , a DBM over X is a mapping

$$M: (X \mathrel{\dot{\cup}} \{x_0\}) \times (X \mathrel{\dot{\cup}} \{x_0\}) \rightarrow (\{<, \leq\} \times \mathbb{Z}) \cup \{(<, \infty)\}$$

- $M(x,y)=(\sim,c)$ encodes the conjunct $x-y\sim c-(x$ and y can be x_0).
- If M and N are DBMs encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M\uparrow M\land N, M[x:=0]$ such that
- all three are again DBM,
- $M\uparrow$ encodes $\varphi_1\uparrow$. $M\land N$ encodes $\varphi_1\land\varphi_2$, and M[x:=0] encodes $\varphi_1[x:=0]$.
- (Canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm)). And there is a canonical form of DBM.
- Thus: we can define our 'Post' on DBM, and let our algorithm run on DBM.

Content

- Motivation:
 Sometimes, regions seem too fine-grained
- Definition

 Examples: Zone or Not Zone
- Zone-based Reachability Analysis
 The basic algorithm.
 Building blocks:
- → A symbolic Post-operator e Post-operator,
 subsumption check
- Difference-Bounds-Matrices (DBMs)

Discussion: Zones vs. Regions

Tell Them What You've Told Them...

- A zone is a set of clock valuations which can be characterised by a clock constraint.
 Each zone is a union of regions.
 not every union of regions is a zone.
- There is an effectively computable.
 Post-operation for TA edges on zones.

 based on: time edpase, intersection, reset
 so there is a fully symbolic indication reachability (five ensure termination by widening)
 even more convenient using DBMs
 since DBMs have a normal form
- For a given model, sometimes the region-based / sometimes the zone-based approach is faster.
 Not so many region-based tools are "on the market" these days.

22/24

References

References

Färzle, M (2007) Formale methoden eingebetteten systeme. Ledure, Summer Semester 2007.
Gafvon-Obsettely Universität Obserbung.

Odeway, E.-R. an Obserbund, H (2008). Red-Time Systems - Formal Specification and Automatic Verification.

Cambridge University Press.