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Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, ¢, € INo the maximal constant for each
€ X,and ¢ = max{c, | # € X}. Then

(2e+2)X1 . (4c + 3)FXIXI=D)

is an upper bound on the number of regions.

In the desk lamp controller,

press?

many regions are reachable in 2 (L), but we convinced ourselves that it’s actually
only important whether v(x) € [0,3] or v(z) € (3,00).

So: it seems like there are even classes of

certain timed automata.

regions
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Sometimes, regions seem too fine-grained

« Zone-based Reachability Analysis

 The basic algorithm,
« Building blocks

W- Post-operator,

 Asymbolic Post-operator

ference-Bounds-Matrices (DBMs)

« Discussion: Zones vs. Regions

‘, 2
Wanted: Zones instead of Regions
* In R(L) we have transitions:
< (@A) = (@ (o). (@) 1) ZD (@ (0.1),
- (@A) (@ 23). (@) 10 25 (@) 31
« Which seems to be a complicated way to write just:
(@A) 2= (@), [0.3)
« Can't we constructively abstract £ to:
Q@ ) —— @ ) — (@03
press? press?
\M;i /
; (3,00)
: 54
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Zones

(Presentation following Frinzle (2007))
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What is a Zone?

Definition. A (clock) zoneisaset = C (X — Time) of valuations of clocks

X such that there exists ¢ € ®(X) with
A

v e zifandonlyif v |= .

Example:

is a clock zone by N

o= »>1 4 x &2

T
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What is a Zone?

Definition. A (clock) zoneis aset 2 C (X — Time) of valuations of clocks
X such that there exists ¢ € ®(X) with

v e zifandonly if v |= .

Example:

is a clock zone by

=@ <9A@E>DAY=DA[Y<2)A(x-y>0)

» Note: Each clock constraint ¢ is a symbolic representation of a zone.

« But: There's no one-on-one correspondence between clock constraints and zones.

The zone z = () corresponds to (z > 1 Az < 1), (z > 2 Az < 2),...

Zone-based Reachability Analysis

Assume a function .
Post, : (L x Zones) — (L x Zones)

such that Post,({¢, z)) yields the configuration (', 2') such that
« zone 2’ denotes exactly those clock valuations 1"
© which are reachable from a configuration (¢, v), v € z,
o bytakingedge e = (£,a.¢,Y.l') € E.

Then { € Lis reachable in A if and only if

Poste,, (... (Poste, ({lini zin)) - ) = (€. 2)
forsomee;, ..., e, € Eand some z.
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More Examples: Zone or Not? azoneiff thereis ¢ € B(X)

stz={v|vEp}

© Set R := {{£ini, zini)} C L x Zones
Wanted: A procedure to compute * Repeat
the set 9
« pick
. {0
A@W {oh N xwue « apair (£, z) from Rand
* (@ 0.3) % « anedge ¢ € E with source ¢
(@ 0.0 x such that Poste (2, 2))
L 1at? not already subsumed by R
IRCAICI  addPost.((¢,2)) to R
o e, [(0.2)37 w Py S T
. & until no more such
: “ (£,2) € Rand e € E are found.
dis ot
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Stocktaking: What's Missing :

o Set R := {(fini, zini)} C L X Zones
* Repeat
« pick
« apair (¢, z) from Rand
« anedge e € E with source £

such that Post. (£, z)) is not already subsumed by R
« add Post.({(,2)) to R
until no more such (£, =) € Rand e € F are found.

Missing:

« Algorithm to effectively compute Post..((/
for agiven configuration (£, z) € L x Zonesand an edge e € E.

« Decision procedure for whether
configuration (¢, ="} is subsumed by a given subset of L x Zones.

Note: The algorithm in general terminates only if we apply widening to zones, that is,
roughly, to take maximal constants ¢, into account (not in lecture).

This is Good News...

..because given (¢, z) = (£, [@o]) and e = (£, v, 0, {y1,...,yn}. (') € E we have

Post.({£.2)) = (¢, [es]) (symbolical: Post. ({£, o)) = (¢, 5))
where
cpi=wo T
let time elapse starting from o:
1 represents all valuations reachable by waiting in ¢ for an arbitrary amount of time.

o w2 =01 AI(()
intersect wariant of £: ¢ represents the “good” valuations reachable from o1

Pz =w2a g
intersect with guard: in 3 are the reachable “good” valuations where ¢ is enabled.

P1=pslyr:=0]..[yn = 0]

reset clocks: , are all possible outcomes of taking e from ps.

@5 =a AI(E)

intersect with invariant of £: (5 are the “good” outcomes of taking e from 3
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What is a Good “Post”?

given by a constraint ¢ € ®(X),  (write: z = [¢])

then the zone component 2’ of Post.(, z) = (¢, 2')

should also be a constraint from ®(X).

(We want to manipulate constraints, not those unhandy sets of clock valuations.)

Good news: the following operations can be carried out by manipulating ¢.
214 XEC AyTO Ay L0

(1) The elapse time operation: V
T : Zones -+ Zones i
2> {v+ 1|t € Time} =
can be carried out symbolically as follows: Lm 4304 X221
o Letz = [¢]

= Obtain ¢’ by removingall upper bounds « < ¢, & < c, from ¢ and adding diagonals
o Then [¢'] = = 1.

This procedure defines  1: #(X) — ®(X)  (a function on clock constraints!),

such that [ 1] = = 1if = = [¢7]

B
Example —« o1=p0t let time elapse. p<o
® @y =1 AI(f) intersect with invariant of ¢ o
e ps=paAgp intersect with guard v
® 1 =aly1:==0]...[ys :=0] resetclocks
© @5 =i AI(¢') intersect with invariant of ¢/
1614

Good News Cont’d

Good news: the following operations can be carried out by manipulating .
(1) elapse time: ¢ 1 with [ 1] = 2 1if 2 = [].
(2) zone intersection: if z; = 1] and 2o = [ip2]. then [y A @2] = 21 N 2.
(3) clock reset:

: Zones x X — Zones
(z,2) = {v[z:=0]|v ez}

can be carried out symbolically by setting x=y A x=2

X=0A may Ax=z T
PxX =0 -
(02 o =0 Nfize]

=0 (3% Ry %)
using clock hiding (existential quantification);

[B2.¢] = {v | thereis t € Time such that v[z := t] |= ¢}

Example < ¢1=¢ot let time elapse. peo
w2 =1 AI(f) intersect with invariant of £

e p3=p2Ap intersect with guard
o w1 =sly1:=0]...[y. :=0] resetclocks
o 5 = s AI({) intersect with invariant of ¢/



Example

* p1=p0 T let time elapse.
® @2 =1 AI(£) intersect with invariant of £
e ps=paAgp intersect with guard
® 4 =@afyn :=0]...[yn :=0] resetclocks

R
Example + ¢1=¢0t e elapse.
® @2 =1 AI(£) intersect with invariant of ¢
cpi=p2Ap intersect with guard
o @4 =3[y :=0]... [y, :=0] resetclocks
® @5 =i ANI({') intersect with invariant of £/
vo=1<y<2 pr=l<ynl<az
A<z<3Az>yY Aw>yAe<y+2
v v »\<
| T A7
1 1
@ o
0 o
0 1 2 3 ‘ 0 1 2 3 7
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pr=1<y<3nl<z
Ae>yha<y+2

1624

Example + ¢1=¢01
@2 =1 AL(0)

o o5 =p@a NI(L

2 er=1<yAl<z
>y AzZyhe<y+2

Example —« o1=p0t

e ps=p2Agp
© pa=palyr=0]...[yn = 0]
)

let time elapse.

tersect with invariant of £

es=p2 A intersect with guard

© 1 =3fy1:=0]...[ys :=0] resetclocks
) intersect with invariant of ¢’
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e elapse. we
® @2 =1 AI(£) intersect with invariant of ¢ —
intersect with guard /
resetclocks

© @5 =i AI(¢') intersect with invariant of ¢/ /

o=1<y<2 pr=1l<ynl<az,
<z<3Axz>y AeZyhe<y+2
-

i 74

/

/ea=1<y<sni<e
ANz>yhe<y+2

9<3 v i 7

Yd
U
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Example + ¢1=¢01

let time elapse. r<2

o w2 =1 AI(f) intersect with invariant of £ o
yi=
. intersect with guard v
. [yn :=0] resetclocks
. @a AI(¢') intersect with invariant of ¢
po=1<y<2 pr=1<ynl<z
AM<a<3AT 2y Arzyrz<y+2
v v i
N /!
1 - 1 -
% )
0 1 3 7 0 1 2 3 ‘
: 16726
Example < ¢1=¢ot let time elapse. r<2
® w2 =1 AI(f) intersect with invariant of £ o
o« p3=pahp intersect with guard v

o s =alyr == 0]...[yn = 0]

o w5 =pa NI(E)

reset clocks
intersect with invariant of ¢’

er=1<y<3Al<z

po=1l<y<2 pr=1l<ynl<az
AM<z<3Az>y Aezyha<y+2 AeZyAe<y+2
v v i v »\
1 1 !
o 0 0 ‘
o 1oz o3 7 o 12 o5 7 o1 o2 s
p3=1<y<3

AM<z<2

Ax>yAT<y+2

16724



Example « ¢1=wat
o 2= AI(0)

let time elapse.
tersect with invariant of ¢
intersect with guard

*ps=p2hp
® 4 =@afyn :=0]...[yn :=0] resetclocks
® @5 =pa ANI({') intersect with invariant of £/
po=1<y<2 pr=1<yAl<z p2=1<y<3Al<z
A<z<3AT>yY Ae2yAz<y+2 Az2yAz<y+2
v v »\. v »\
| Ty
1 1 1
@ o e
1 2 3 ‘ 1 2 3 7 1 2 3 ‘
pa=1<y<3
A<z<2
AzZyhe<y+2
v
2
! ¥
0
0 1 2 3 ‘
16721
Example + o1=0t e elapse. r<2
® @2 =1 AI(£) intersect with invariant of ¢ o
e pi=p2Ap intersect with guard v

pa=palyr :=0]...[yn :=0]

reset clocks

@5 = a AI({') intersect with invariant of ¢/

wo=1<y<2 pr=1<yAl<z pa=1<y<3Al<z
AM<z<3Az>y Ar>yAz<y+2 Ne>yhe<y+2
. T4 1A
s, 4 o
0 1 H 3 0 1 2 3 N 0 1 2 3 -
p3=1<y<3 a=y=0A ps=a>1Ay=0A
A<z<2 Iyl<y<3Al<z< Fpl<y<3Al<z<

AzZyhe<y+2 2ATZyAT<y+2

. LL\\
—H

3 7 o 1 2 3

2he>yAa<y+2
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Example + ¢1=¢01 let time elapse.
® @2 =1 AI(f) intersect with invariant of ¢
cps=paAp intersect with guard
© 1 =3fy1:=0]...[ys :=0] resetclocks
© @5 = s ANI({') intersect with invariant of ¢/
po=1<y<2 P E1<yAl<e p2=1<y<3al<a
A<z<3AT>Y Ae2yArr<y+2 Ae2yAz<y+2
v v i. v i
| Ty Ay
1 ~ ' 1
@ ) e
0
0 1 2 3 7 1 2 3 ‘ 1 2 3 7
P3=1<y <3 CiZy=0A
Al<z<2 Jyl<y<3al<az<
ANz>yhz<y+2 2/ >yre<y+2
v
2
5 1 ~
i )
0
3 0 1 2 3
Example —« o1=p0t e elapse. p<o
® @2 =1 AI(£) intersect with invariant of ¢ o
. . yi=
cps=p2Ap intersect with guard
o o1 =pa[y1:=0]...[y. :=0] resetclocks
© @5 =i AI(¢') intersect with invariant of ¢/
po=1<y<2 pr=l<ynl<az p2=1<y<3Al<w
A<z<3AT>Y Ae>yArr<y+2 Ne>yAe<y+2
v v i v i
| iy M
1 _ 1 1
@ ) o
o o o
0 1 2 3 * 0 1 2 3 ‘ 0 1 2 3 7
p3=1<y<3 pi=y=0A es=x>1AY=0A
A<z<2 Jyl<y<3al<z< Jyl<y<3nl<z<
Ae>yhz<y+2 2T yAT<y+2 2/ > yAT<y+2
v v v
B 2 \T“ 2
i 1 1 |
. @ 2 [
P HERGSI N
8 0 1 2 3 7 0 1 2 3 ‘ 1 2 3 7
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Example « p1=¢0t
e =1 AI(f)
cps=pahp
o o1 =3l
po=1<y<2
AM<a<3Az>y

let time elapse.

tersect with invariant of ¢
intersect with guard
[yn :=0] resetclocks

pr=1<ynl<z
AzZyrz<y+2

pr=1<y<3al<z

AzZyAe<y+2

1 3 7 0 1 2 3 ‘ 1 2 R
pa=1<y<3 pa=y=0A
A<z<2 Jyl<y<3Al<z<
ANz>yAe<y+2 2z >yAe<y+2
v v i
B 2 ‘T“
5 1 o ! 2
. o )
1 2 3 7 0 1 2 R
3 16724
Example < ¢1=¢ot let time elapse. r<2
® w2 =1 AI(f) intersect with invariant of £ o
o« p3=pahp intersect with guard v
o p1=palyri=0]...[yn :=0] resetclocks
o 5 =i ANI(¢') intersect with invariant of ¢/
po=l<y<2 pr=l<ynl<az p2r=1<y<3nl<z
Al <e<3Az>y Ae>yAz<y+2 Ae>yAe<y+2
v v »\. v »\
| T M
1 . 1 4 1 4
o 0 0
o 1 2 3 7 0 1 2 3 * 0 1 2 3 ‘
p3=1<y<3 Pa=y=0A —
AM<z<2 Jyl<y<3al<z< HAMMS@HO
Az>yAe<y+2 2z >yAe<y+2 -
v v i v
2 SRR T 2
i 1 — — 1 -
@ v
0 0 04—
‘ 1 2 3 ‘
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Definition
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Zone-based Reachability Analysis

The basic algorithm.
Building blocks:
W. Post-operator,

@ subsumption check

A symbolic Post-operator ,\

« Difference-Bounds-Matrices (DBMs)

« Discussion: Zones vs. Regions

 Motivation:

Examples: Zone or Not Zone

« Zone-based Reachability Analysis

W. Post-operator,

@ subsumption check
e Asymbolic Post-operator

« Difference-Bounds-Matrices (DBMs)

« Discus:

: Zones vs. Regions
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Difference Bound Matrice:s

disjont

ite set of clocks X, a DBM oyér X is a mapping

M (X U {ao}) x (X U {zo}) = ({<, <} x Z) U{(<, 00)}

y) = (~, ) encodes the conjunct z — y ~ ¢ (and y can be ).

Alay)= ro-y £-5
S es
- s

Moy)-(,22)
Aoy er

1824

Pros and cons

« Zone-based
reachability analysis usually is explicit wrt. discrete locations:

* maint:

s a list of location/zone pairs (or location/DBM pairs)
o confined wrt. size of discrete state space
e of clock constraints

« avoids blowup by number of clocks and
through symbolic representation of clocks

© Region-based
analysis provides a finite-state abstraction,
amenable to finite-state symbolic model-checking
« less dependent on size of discrete state space

« exponential in number of clocks

Difference Bound Matrices

» Given a finite set of clocks X, a DBM over X is a mapping

M : (X U{xo}) x (X Ufao}) = ({<, <} x Z) U{(<,00)}

~c¢ (randy can be x).

encodes the conjunct z —

If M and N are DBMs encoding ; and ¢, (representing zones z; and z,),
then we can efficiently compute M 1, M A N, M[z := 0] such that

o all three are again DBM,

o M1 encodes ¢; 1,

o M AN encodes o A s and

o M[z:=0] encodes [z :=0].

And there is a canonical form of DBM.
(Canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm)).

Thus: we can define our ‘Post’ on DBM, and let our algorithm run on DBM.
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* Motivation:
Sometimes, regions seem too fine-gr

= Examples: Zone or Not Zone

« Zone-based Reachability Analysis
« The basic algorithm.
« Building blocks:

vv; Post-operator,

Lie subsumption check
« Asymbolic Post-operator

« Difference-Bounds-Matrices (DBMs)

« Discus:

: Zones vs. Regions



Tell Them What You’ve Told Them. ..

« Azoneisaset of clock valuations
which can be characterised by a clock constraint.

o Each zone is a union of regions,
not every union of regions is a zone.

There is an effectively computable
Post-operation for TA edges on zones.

 based on: time elapse, intersection, reset

« sothere is a fully symbolic
decision procedure for location reachability

(if we ensure termination by widening)
« even more convenient: using DBMs
* since DBMs have a normal form

« For a given model, sometimes the region-based /

sometimes the zone-based approach is faster.
Not so many region-based tools are “on the market” these days.
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