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Recall: Calculus
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o A proof system or calculus C is a finite set of proof rules of the form

{F,....F,

T @ere cond(Fy,...,Fy, F)

consisting of:

e premise,” w29

e conclusion,

e application condition (has to be decidable).

e Incase n = 0, the rule is called axiom and written as

F where cond(F)

o If the application condition is a tautology, we may omit it.
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Recall: Proofs in a Calculus
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The central concepts of a calculus are that of proof and provability.

¢ Aproof of a formula F'in C from a set of formulae 7{ is a finite sequence

o g G1

s

@«/QG

Gm
such that each formula G;, 1 < ¢ < m,
e (; isin H (called assumption or hypothesis), or

e G;is an axiom of C,

e (; is a conclusion of a rule in C applied to some predecessor formulae in the
proof, i.e. there exists a proof rule

Fi,...,F,

&) G

where cond(Fy,...,F,,G;)
st F,...,F, C{Gy,...,G;—1} and cond(Fy, ..., F,,G;) holds.
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Example: Predicate Calculus
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e T: itisTueor Thu Assumptions H:
between 14:00 and 16:00

e R: ImintheRTS lecture
o E: I'm excited

Claim: H# ': =T
Some predicate calculds proof rules: cailiapos o, raocks  prrons
—N — —n —s 9
(A B L —9 l=—"29% P
p =T g = —p
© @
\/
apply (A)
[
T = FE
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Example: Predicate Calculus
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e T: itis TueorThu Assumptions H:
between 14:00 and 16:00

e R: ImintheRTS lecture
o E: I'm excited

® T =— R (onTue/Thutimes, I'm at RTS lecture)
® R = FE (intheRTS lecture, I'm excited)

® —F (I'm not excited now)

Claim: # = -T (If H hold, it's not Tue/Wed 14:00-16:00 now.)
Some predicate calculus proof rules: cahiapas ot rockes
s 9 =3 =1 — 9
(A) p 9 g r (B) p q (@) p q9, P
p =T -q = p
© ©
\N/
apply (A)
1
T :I> E
apply (B)
1
-F = T ®
~
apply (C)
1
=T Thus H + =T

7/38



Recall: Theorems of a Calculus

o Wesay, F'is provable from H = {H3, ..., Hi} inC, in symbols
H e F,

if and only if there exists a proof of F' from % in C.

¢ Notation:
e write Hy,...,H F¢ Finstead of {Hy,...,H;} F¢ F;
o write ¢ Finstead of § ¢ F;
e If Cis clear from the context, we may omit the index.

e Aformula F with ¢ F'is called a theorem of C.

Recall: Soundness and Completeness of a Calculus

o A calculus C is called sound if and only if
o conect )
H ¢ Fimplies H = F

“whenever F is (syntactically) derivable from # in C,
then F'is implied by H semantically”

In case of DC, “H = F" means:

for allinterpretations Z, if 7 |= G forall G € H then ,IVE—F

Wt&/s{m
o To be useful, a calculus (for DC) should be sound.

o A calculus C is called complete if and only if

H E FimpliesH ¢ F

o Due to reasons of computability, we cannot always have completeness.
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A Calculus for DC
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A Sound Calculus for DC

)
~Ga)iF)

Transtivy

Chop-Oveday

v = fs )
) = Pl L)

LR
™ G = F 1] (@056 = 320 F16) whee = ¢
(GiF) = P tigdfomda (Gi(3ze ) = Tre(GiF) Fe(C)
Chop-£im Chop

) = ~(CR=)
(=) F) = ~((t = )i (-F))

= u = (=20

Chop-Langth
. F
Fe =0 | | e
F= @=0iF) F
TPTIQ=IPAQ[PvQ) | [(P=niUf =9 — [P-x+s oo et
ouradd our-chop Necesary
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A Sound Calculus for DC

- 6-2017-11-14 - Scalculus -

F, F = G F
G VrzeF
modus ponens V -Introduction
F is chop- L F is chop-
F Flr .=
L where free or 6 is a u where free or 6 is a
Flz:= 0] rigid term dzeF rigid term
V -Elimination 3 -Introduction
Predicate Calculus
11/38
A Sound Calculus for DC
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r =

Reflexivity

r=y — y==x

Symmetry

(r=yAhy=z2) = z==z

Transitivity

(1= AN ANxy =9yn) = fla1,...,20) = fY1,--,Yn)
(xl:yl/\/\mn:yn) :>p(xlw"axn):p(ylv"'vyn)

Leibniz-Property

Axiomatisation of Equality
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A Sound Calculus for DC
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a0
-iminaton

hop
where freeor 01 3
em

Pl hop
where freeor 01 3
a

: e
-nwoducion

=0 (F2G)iH) = (F3(G:H)
Chop-asm.

(F1G) A~(F3Gy) = (F3(G)1~Ga))
(161 F) A~(Gai F)) = (Gy A ~Ga)i F)

op-ovetey

(GreF)1G) = 320 (Fi6) whee + ¢
(G:(3ze ) = 3xe(G:F) (G
hopex

TP=

)+ 1PV Q)
our-dd

our-chop

200120 = (=2+3) == (t=2):(t=1)
: bt tengh
Chop-tengi
P P
P me=o (B e [l @ —
=T P @=0:E) ¥
W= [P=rty 7 g
- T = e
i Ghopton

(FiG) AN=(FiGa)) = (Fi(G1A—Ga))

€20 ((F:G): H) = (F:(G:H)) (GL3 F) A=(G23 F)) = ((G1A=G2)i F)
Length-Pos Chop-Asm Chop-Overlay
(F;G) = F  where Fisa (BzeF);G) = Fze(FiG)  where = ¢
(G;F) = F rigidformula (G;(3zeF)) = 3ze(G;F) [free(G)
Chop-Elim Chop-Ex
(Fi(t=2) — ~(-F)i ((=2)
(C=)iF) = ~(=o;(-py | | FZONYEO T (Emarn e (E=a =)
Add-Length
Chop-Length
F F = G
F = (F;(t=0)) =((~F); G) (F:H) = (G: H)
F = ((t=0);F) F F= G
Chop-Pnt (G (~F)) (HiF) = (H:G)
Necessary Chop-Mon

Interval Logic

A Sound Calculus for DC
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PAQ) Q)

ouradd

G = (Fi@i)
Chop-asm
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(FiG) A~(FiGa)) = (F3(Gr A~G))
(@13 ) A~(Ga: F)) = (617 ~Ga)iF)

Chop-Overay

Fi6) = F whee Fia
(@:F) > P rgdfomils
Chop-gim

(@reFiG) = 32+(F16) whare = ¢
(@3(3reF) = 3re(GiF) F6)
hopix

20020 = (I=rr9) = (= 0=)
Add-Lengh

J0=0

Dur-Zero

[1=¢
Dur-One

[P>0

Dur-Pos

where
[P=[Q P < Qis
a tautology
Dur-Logic

[P+[Q=[(PNQ)+[(PVQ)

Dur-Add

([P=xz);(JP=y) = [P=x+y

Dur-Chop

Durations

11738



A Sound Calculus for DC
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Example
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(1) [ = F (1) [l = F
(2) F;[P] = F (2) [P];F = F
(3) F;[-P] = F (3) [-P|;F = F
4) F (4) F
Induction-L Induction-R
Induction

11738

(1) [ = F
(2) F;[P] = F
(3) Fi[-P] = F

(4)F
Induction-L

4)r
Induction-R

Let P be a state assertion in £ := [] V (true; [P]) V (true; [-P])

Claim: E is valid.

Proof: Use the Induction-L rule.

o (1): obvious
e (2): assume E; [P].

by rule Chop-Mon

(F;:H) — (G; H)
/&gmpjyﬁ
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Example LV N—F ) N=F
—_— (2) F;[Pl = F (2) [Pl;F = F
3) F;[-P] = F 3) [-P];F = F
4 r 4 F
Induction-L Induction-R

Let P be a state assertion in E := [] V (true; [P]) V (true; [-P])
Claim: E is valid.
Proof: Use the Induction-L rule.

e (1): obvious
e (2): assume E; [P].

. F = G
o fromaxiom F = true, (F:H) — (G H)
we can derive (E; [P]) = (true; [P]) Chop-Mon
by rule Chop-Mon
e From assumption (E; [ P]), F, F = G
we can derive (true; [P]) G
using modus ponens. modus ponens

e ThusE; [P| = E.

o (3): similar 12/38

Special Cases of Induction
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(1) [ = F oY) = F
(2) F;[Pl = F (2) [P];F = F
3) F;[-P] = F (3) [-P];F = F
4)r @4F
Induction-L Induction-R
7 N

Remark 2.30. For the case F' = (OF; — F3),
the premises (2) and (3) of Induction-R can be reduced to

(DFl/\FQ;[P]) — F2 (2')

(B AFy; [-P]) = F (3)

13/38



Special Cases of Induction

(1) [l = F oY) = F
(2) F;[Pl = F (2) [P} F = F
(38) F;[-P] = F (3) [-P];F = F
4 F 4)F
Induction-L Induction-R

Remark 2.31. For the case F' = (OF, — 0OF),
the premises (2) and (3) of Induction-R can be reduced to

(OF AOF; [P]) = B (2)

(OFy AOF; [-P)) = F, (3)

13/38

A Complete Calculus for DC?

Theorem 2.23.
A sound calculus for DC formulas cannot be complete.

Reasons for the necessary incompleteness of sound calculi:

validity of DC formulae may depend on facts of the real numbers.

For instance, the fact that every real number is bounded by some natural number
(as in the proof of 2.23).

We only cite: it is impossible to give a complete set of proof rules that characterise
all valid facts of the reals.
What we can have is relative completeness in the following sense:

Given an “oracle” for the valid arithmetic formulae over reals,
we can always find a proof of F' from .

The proof system presented earlier is of such a kind.
1438
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Decidability Results: Motivation

6 - 2017-11-14 - Smotiv

e Recall:

Given plant assumptions as a DC formula ‘Asm’ over the input observables,
verifying correctness of ‘Ctrl’ wrt. requirements ‘Req’ amounts to proving

o Ctrl AAsm => Req (1)
o If‘Asm’is then (1) is trivially valid,
thus each () ‘Ctrl’ is (trivially) correct wrt. ‘Req’

o So: there is a strong interest in assessing the satisfiability of DC formulae.

o Question: is there an automatic procedure to help us out?
(IOW: is it decidable whether a given DC formula is satisfiable?)

e Interesting for ‘Req” is Req realisable (from 0)?
e Question: is it decidable whether a given DC formula is realisable?

17/38

Decidability Results for Realisability: Overview

Fragment Discrete Time Continous Time
RDC decidable decidable
RDC+ /¢ =7 decidable for r € IN | undecidable forr € R™
RDC+ [P =[P, undecidable undecidable
RDC+/¢=2x,Vz undecidable undecidable
DC —n— e —

18/38
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RDC in Discrete Time

19/38

Restricted DC (RDC) — Syntax
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F .= ’—P-| ‘_\F]_‘Fl\/FglFl;FQ

where P is a state assertion over boolean observables.

First observations (vs. full DC):

No global variables (thus dont need V' in semantics).

Chop operator is there.
Integral ‘/ " and length 47 “Hidden”in [ P.
Predicate and function symbols?  No.

o For some subinterval ‘0F"?  In a minute.

Empty interval ‘[]7  Inaminute.

20y38



Discrete Time Interpretations of Observables
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e Aninterpretation 7 is called discrete time interpretation if and only if, for each

state variable X,

X7 : Time — D(X)

with Time = R{, all discontinuities are in INo.

1
Xz
0

Not a discrete time interpretation.

V O

| S
T

t T +
17\1 2 3 Time

y y
T T

1 2 3 Time

A discrete time interpretation.

2138

Discrete Time Interpretation of RDC Formulae
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F = |—P1 |_|F1|F1\/F2|F1;F2

Z,[b.e] = Fi; Py

if and only if there exists m € [b, e] N Ny such that

Aninterval [b, ] C Intv is called discrete if and only if b, e € IN.

We say (for a discrete time interpretation Z and a discrete interval [b, ¢])

Z,[b,m] E FA and Z,[m,e] E Fy

The interpretations of ‘v’ and ‘=" remain unchanged.

Z,[be] = [P]ifandonly if [, Pr(t) dt = (e —b)and e — b > 0.

2238



Differences between Continuous and Discrete Ti

. b2
o Let P be a state assertion. Mot e
Continuous Time Discrete Time

= ey | w1 Nl
= [P1| X - X NI
I s~
—_—
(PLPY | X - m
/ ek
kjL [Pl & -or
Swallst - 0 -4 =
Differences between Continuous and Discrete Time
o Let P be a state assertion.
Continuous Time Discrete Time
([P [P)) v v
— [P]
=Pl = 1 X
([PT15 [P])

e Inparticular: £ =1 < (J1] A=([1];[1])) (in discrete time).

23/38
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Expressiveness of RDC

o (=1 <= [1]A=([175]1])
e /=0 = 1]

o true <:>€:OV’!(€‘O>
e [P=0 = [-FP[v ¢=0

o [P=1 = (fP:o)/(]_Hné-—A,{fﬂO)
o [P=k+1 <« ([P=L),(JP=1)
o [P>k = ([P =) ; e

o [P>k = P>k
o [P<k = (/P >L)
o [P<k = [FP<lk-1
where k € IN.

\//\j/’—fz W7 ?/ *){u{

2438

Decidability Results for RDC in Discrete Time
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Decidability of Satisfiability/Realisability from O
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Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

26/38

Sketch: Proof of Theorem 3.6
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o Give a procedure to construct, given a formula F, a regular language £(F) such that
Z,[0,n] E Fifandonly if w € L(F)

where word w describes 7 on [0, n]
(suitability of the procedure: Lemma 3.4).

o Then F is satisfiable in discrete time if and only if £(F’) is not empty
(Lemma 3.5).

e Theorem 3.6 follows because

o L(F) can effectively be constructed,
o the emptyness problem is decidable for regular languages.

27/38



Alphabet of a Formula
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o ldea:

e alphabet X(F) consists of basic conjuncts of the state variables in F,
e aletter corresponds to an interpretation on an interval of length 1,
o aword of length n describes an interpretation on interval [0, n].

e Example: Assume F contains exactly state variables XY, Z, then

S(F)={XAYNANZ, XAYAN-Z XA-YANZ XA-YA-Z,
“XANYNZ, —-XANYAN-Z, -XAN-YNZ —-XAN-YAN-Z}

g &

Z

w=(~X A=Y A-2Z)
(X A=Y A —\Z)
(XAY A=Z)

(XAY AZ) e S(F)

28/38

Words vs. Interpretations
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Definition 3.2. Aword w = a; ...a, € X(F)* withn >0
describes a discrete interpretation Z on [0, »] if and only if

Viefl,... ,n}Vteli—1,4[: I[a;](t) = 1.

Forn = 0wesetw = ¢.
\\ )

e Example: word w describes 7 on [0, 4].

S(F)={XAYANZ XAYA-Z, XAN-YANZ XA-YA-Z,
“XAYANZ, —XAYNAN-Z —XAN-YANZ —=XAN-YAN-Z}

le :

0 — w= (=X A=Y A-Z)
YI; (X A=Y A-Z)

) (X AY A=Z)
o p—— (X AY AZ) € S(F)*

0 1 2 3 g4lime
29/38



Construction of the Language L(F') of Formula F

- 6-2017-11-14 - Srdedec -

o Note: Each state assertion P can be transformed
into an equivalent disjunctive normal form \/!" | a; with a; € X(F).

[ Yt ld
o Set DNF(P) = {ay, ..., am} (C S(F)). < XaTraZ fbump/
)(/l 2Yaa?2
o Define £L(F) inductively: ﬁw%ﬁﬁ ey,
£([P)) = m/;r('f)““
L(—F1) :Z(v‘-)* \Si(jr_/
LIFVE)=X(E)c&(F, )
L(Fy; Fy) = %(E)Qa(ﬂ)

3038

Construction of the Language L(F') of Formula F
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o Note: Each state assertion P can be transformed
into an equivalent disjunctive normal form \/!" , a; with a; € X(F).

o Set DNF(P) := {a1,...,am} (C S(F)).

o Define L(F) inductively:

3038



Lemma 3.4
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Lemma 3.4. For all RDC formulae F, discrete interpretations Z, n > 0,
and all words w € ¥(F')* which describe Z on [0, n],

Z,[0,n] = Fifand only if w € L(F).

Proof: By structural induction.
e Basecase: F' = [P]:
o Letw =ay,...,a,,n > 0,describe Z on [0, n].
e 7,[0,n] E [P]
< Z7,[0,n] = [Plandn > 1
e n>landV1<j<neZ[j—1,j = [P]
< n>landV1<j<neZ[j—1j F([P]A (aﬂ)and a; € DNF(P)
< n>1landV1<j<nea; € DNF(P)
< w € DNF(P)t < we L(F)
PG\

A

~—

3138

Lemma 3.4 Cont’d
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Lemma 3.4. For all RDC formulae F, discrete interpretations Z, n > 0,
and all words w € ¥(F')* which describe Z on [0, n],

Z,[0,n] = Fifand only if w € L(F).

Proof: By structural induction.
e Induction steps: F' = —F:
o Letw =ay,...,a,,n > 0,describe Z on [0, n].
o Z,[0,n] E -F
< notZ,[0,n] E F}
— w¢ L(F)

— wew
— w € L(—F
o [V Fy, Fy; Fy:simi

3238



Sketch: Proof of Theorem 3.9

- 6-2017-11-14 - Srdedec -

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

We have

If L is regular, then kern (L) is also regular.
kern(L(F)) can effectively be constructed.

kern(L) contains all words of L whose prefixes are again in L.

Lemma 3.8. For all RDC formulae F', F is realisable from O in discrete
time if and only if kern(L(F)) is infinite.

Infinity of regular languages is decidable.

Decidability Results for Realisability: Overview

- 6-2017-11-14 - Sdecover -

Fragment Discrete Time Continous Time
RDC decidable / decidable
RDC+ /¢ =7 decidable for r € IN | undecidable forr € R™
RDC+ [P =[P, undecidable undecidable
RDC+/¢=2x,Vz undecidable undecidable
DC —— — i —

3338
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Tell Them What You’ve Told Them. . .
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o Asound calculus for DC exists,
a complete calculus does not exist.

Knowing the (sound) proof rules may also be useful
when conducting correctness proofs manually.

— see the textbook for the details

o Decidability of, e.g, satisfiability of DC formulae
is interesting.

A decision procedure could analyse, e.g., whether
plant assumptions Asm are (at least) satisfiable.

o For Restricted DC in discrete time,

o satisfiability is decidable.
o Proof idea: reduce to regular languages.

36/38
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