## Real-Time Systems

# Lecture 18: The Universality Problem of Timed Büchi Automata

2018-01-23

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

#### A Theory of Timed Automata $^{\rm 1}$

Rajeev Alur <sup>2</sup> David L. Dill  $^3$ Computer Science Department, Stanford University Stanford, CA 94305.

Abstract. We propose timed (finite) automate to model the behavior of real time systems ever time. Our definition provides a timple, and yes powerful, way to value of the control of the

<sup>&</sup>lt;sup>1</sup>Preliminary versions of this paper appear in the Proceedings of the 17th International Colloquium on Automata, Longuages, and Programming (1990), and in the Proceedings of the REX workshop "Real-lime: theory in practice" (1991).

<sup>2</sup>Cattent address: AT&T Bell Laboratories, 800 Mountain Avenue, Room 2D-144, Murray Hill, NJ-montreat.

#### • Timed Büchi Automata

- → vs. Pure/Extended Timed Automata
- ← timed word, timed language
- accepting TBA runs
- └ **language** of a TBA

#### The Universality Problem of TBA

- definition: universality problem
- undecidability claim
- oproof idea: 2-counter machines again
- construct observer for non-recurring computations

### Consequences

- → the language inclusion problem
- the complementation problem
- Beyond Timed Regular

4/36

### Timed Büchi Automata

Alur and Dill (1994)

### ... vs. Timed Automata



$$\begin{split} \xi &= \langle \textit{off}, 0 \rangle, 0 \stackrel{1}{\longrightarrow} \langle \textit{off}, 1 \rangle, 1 \\ &\stackrel{press?}{\longrightarrow} \langle \textit{light}, 0 \rangle, 1 \stackrel{3}{\longrightarrow} \langle \textit{light}, 3 \rangle, 4 \\ &\stackrel{press?}{\longrightarrow} \langle \textit{bright}, 3 \rangle, 4 \rightarrow \dots \end{split}$$

Behaviour of  $\mathcal{A}$ : set of computation paths / runs.



Timed Büchi Automaton A accepts timed words such as

$$(a,1),(b,2),(a,3),(b,4),(a,5),(b,6),\ldots$$

6/36

## Timed Languages

**Definition.** A time sequence  $\tau = \tau_1, \tau_2, \dots$  is an infinite sequence of time values  $\tau_i \in \mathbb{R}_0^+$ , satisfying the following constraints:

- (i) Monotonicity:  $\tau$  increases strictly monotonically, i.e.  $\tau_i < \tau_{i+1}$  for all  $i \ge 1$ .
- (ii) Progress: For every  $t \in \mathbb{R}^+_0$ , there is some  $i \geq 1$  such that  $\tau_i > t$ .

**Definition.** A timed word over an alphabet  $\Sigma$  is a pair  $(\sigma, \tau)$  where

- $\sigma = \sigma_1, \sigma_2, \dots \in \Sigma^{\omega}$  is an infinite word over  $\Sigma$ , and
- $\bullet$  au is a time sequence.

**Definition.** A timed language over an alphabet  $\Sigma$  is a set of timed words over  $\Sigma$ .

### Example: Timed Language

#### **Timed word** over alphabet $\Sigma$ : a pair $(\sigma, \tau)$ where

- $\sigma = \sigma_1, \sigma_2, \dots$  is an infinite word over  $\Sigma$ , and
- $\tau$  is a time sequence (strictly (!) monotonic, non-Zeno).

- 2018-01-23 - Stba -

8/36

### Example: Timed Language

**Timed word** over alphabet  $\Sigma$ : a pair  $(\sigma, \tau)$  where

- $\sigma = \sigma_1, \sigma_2, \dots$  is an infinite word over  $\Sigma$ , and
- au is a time sequence (strictly (!) monotonic, non-Zeno).

- 18 - 2018-01-23 - Stba -

**Definition**. The set  $\Phi(X)$  of clock constraints over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \wedge \delta_2, \qquad \text{ where } x \in X \text{, } c \in \mathbb{Q}.$$

#### Definition.

A timed Büchi automaton (TBA)  $\mathcal{A}$  is a tuple  $(\Sigma, S, S_0, X, E, F)$ , where

- $\Sigma$  is an alphabet,
- S is a finite set of states,  $S_0 \subseteq S$  is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$  gives the set of transitions.

An edge  $(s,s',a,\lambda,\delta)$  represents a transition from state s to state s' on input symbol a. The set  $\lambda\subseteq X$  gives the clocks to be reset with this transition, and  $\delta$  is a clock constraint over X.

•  $F \subseteq S$  is a set of accepting states.

9/36

## Example: TBA

$$\mathcal{A} = (\Sigma, S, S_0, X, E, F)$$
$$(s, s', a, \lambda, \delta) \in E$$

$$\begin{array}{c|c}
b & & b \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 $E = \{ (s_6, s_1, \alpha, \beta, true), ... \}$ 

**Definition**. A run r, denoted by  $(\bar{s}, \bar{\nu})$ , of a TBA  $(\Sigma, S, S_0, X, E, F)$  over a timed word  $(\sigma, \tau)$  is an infinite sequence of the form

$$r: \underbrace{\langle s_0, \nu_0 \rangle}_{\tau_1} \underbrace{\langle s_1, \nu_1 \rangle}_{\tau_2} \underbrace{\langle s_2, \nu_2 \rangle}_{\tau_3} \underbrace{\langle s_2, \nu_2 \rangle}_{\tau_3} \dots$$

with  $s_i \in S$  and  $\nu_i : X \to \mathbb{R}^+_0$ , satisfying the following requirements:

18 - 2018-01-23 - Stha -

11/36

### (Accepting) TBA Runs

**Definition.** A run r, denoted by  $(\bar{s}, \bar{\nu})$ , of a TBA  $(\Sigma, S, S_0, X, E, F)$  over a timed word  $(\sigma, \tau)$  is an infinite sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow[\tau_1]{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow[\tau_2]{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow[\tau_3]{\sigma_3} \dots$$

with  $s_i \in S$  and  $\nu_i: X \to \mathbb{R}^+_0$  , satisfying the following requirements:

- Initiation:  $s_0 \in S_0$  and  $\nu(x) = 0$  for all  $x \in X$ .
- Consecution: for all  $i \geq 1$ , there is  $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$  in E such that
  - $(\nu_{i-1} + (\tau_i \tau_{i-1}))$  satisfies  $\delta_i$ , and
  - $\nu_i = (\nu_{i-1} + (\tau_i \tau_{i-1}))[\lambda_i := 0].$

**Definition**. A run r, denoted by  $(\bar{s}, \bar{\nu})$ , of a TBA  $(\Sigma, S, S_0, X, E, F)$ over a timed word  $(\sigma,\tau)$  is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \dots$$

with  $s_i \in S$  and  $\nu_i : X \to \mathbb{R}_0^+$ , satisfying the following requirements:

- Initiation:  $s_0 \in S_0$  and  $\nu(x) = 0$  for all  $x \in X$ .
- Consecution: for all  $i \geq 1$ , there is  $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$  in E such that
  - $(\nu_{i-1} + (\tau_i \tau_{i-1}))$  satisfies  $\delta_i$ , and
  - $\nu_i = (\nu_{i-1} + (\tau_i \tau_{i-1}))[\lambda_i := 0].$

The set  $inf(r) \subseteq S$  consists of those states  $s \in S$  such that  $s = s_i$  for infinitely many  $i \geq 0$ .

**Definition.** A run  $r=(\bar{s},\bar{\nu})$  of a TBA over timed word  $(\sigma,\tau)$ is called (an) **accepting** (run) if and only if  $inf(r) \cap F \neq \emptyset$ .

11/36

### Example: (Accepting) Runs



**Timed word**:  $(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \dots$ 

• Can we construct any run? Is it accepting?

$$s: \langle s_0, 0 \rangle \xrightarrow{q} \langle s_2, 0 \rangle \xrightarrow{b} \langle s_3, 1 \rangle \xrightarrow{q} \langle s_2, 0 \rangle \dots \qquad inf(r) = \{s_3, s_2\} \neq \emptyset$$

• Can we construct a non-run?

SLET 
$$(a,1), (b,10), (a,1), (b,12), \dots$$
  $(s_0,0) \xrightarrow{a} (s_2,0) \xrightarrow{b} (s_2,0) \xrightarrow{q} (s_2,0) \dots$ 

• Can we construct a (non-)accepting run?

$$\langle S_{0_1} O \xrightarrow{\alpha} \langle S_{2_1} A \rangle \xrightarrow{b} \langle S_{0_1} Z \rangle \xrightarrow{\alpha} \langle S_{1_1} Z \rangle \cdots$$

-18 - 2018-01-23 - Stba

### The Language of a TBA



**Definition**. For a TBA  $\mathcal{A}$ ,

the language  $L(\mathcal{A})$  of timed words it accepts is defined to be the set

 $\{(\sigma,\tau) \mid A \text{ has an accepting run over } (\sigma,\tau)\}.$ 

For short: L(A) is the language of A.



**Definition.** A timed language L is a timed regular language if and only if  $L = L(\mathcal{A})$  for some TBA  $\mathcal{A}$ .

8 - 2018-01-33 - Stha

13/36

## Example: Language of a TBA

 $L(\mathcal{A}) = \{(\sigma,\tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma,\tau)\}.$ 



 $\textbf{Claim} \text{: } L(\mathcal{A}) = L_{crt} \ (= \{((ab)^\omega, \tau) \mid \exists \, i \, \forall \, j \geq i : (\tau_{2j} < \tau_{2j-1} + 2)\})$ 

• 
$$(\sigma, \tau) \in L(\mathcal{A}) \implies (\sigma, \tau) \in L_{crt}$$
:

•  $(\sigma, \tau) \in L_{crt} \implies (\sigma, \tau) \in L(\mathcal{A})$ :

### The Universality Problem is Undecidable for TBA

Alur and Dill (1994)

8 - 2018-01-23 - main

15/36

## The Universality Problem

- Given: A TBA  $\mathcal{A}$  over alphabet  $\Sigma$ .
- Question: Does  $\mathcal A$  accept all timed words over  $\Sigma$ ?

  In other words: Is  $L(\mathcal A) = \{(\sigma,\tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence}\}.$
- Obvious examples exist: Let  $\Sigma = \{a,b,c\}$  , then



accepts all timed words over  $\Sigma$ .

• In general not that obvious.

- Given: A TBA  $\mathcal{A}$  over alphabet  $\Sigma$ .
- Question: Does  $\mathcal A$  accept all timed words over  $\Sigma$ ?
  In other words: Is  $L(\mathcal A) = \{(\sigma,\tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence}\}.$

**Theorem 5.2.** The problem of deciding whether a timed automaton over alphabet  $\Sigma$  accepts all timed words over  $\Sigma$  is  $\Pi_1^1$ -hard.

("The class  $\Pi_1^1$  consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].)

**Recall**: With classical (untimed) Büchi Automata, this is different:

- Let  $\mathcal{B}$  be a Büchi Automaton over  $\Sigma$ .
- $\mathcal{B}$  is universal if and only if  $\overline{L(\mathcal{B})} = \emptyset$ .
- $\mathcal{B}'$  such that  $L(\mathcal{B}') = \overline{L(\mathcal{B})}$  is effectively computable.
- Language emptyness is decidable for Büchi Automata.

16/36



- Consider a language  $L_{undec}$  consisting of the recurring computations of a 2-counter machine M.
- Construct a TBA  $\mathcal{A}$  from M which accepts the complement of  $L_{undec}$ , i.e. with  $L(\mathcal{A})$   $\overline{L_{undec}}$ .
- Then A is universal if and only if  $L_{undec}$  is empty... ...if and only if M doesn't have a recurring computation.
- Thus if universality of TBA would be decidable, we had a decision procedure for recurrence of 2-counter machines.

- 18 - 2018-01-23 - Suniv -

### Once Again: Two Counter Machines (Different Flavour)

#### A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions  $\{b_1, \ldots, b_n\}$ . An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

A configuration of M is a triple  $\langle i, c, d \rangle \in \{1, \dots, n\} \times \mathbb{N}_0 \times \mathbb{N}_0$ :

- program counter  $i \in \{1, \dots, n\}$ ,
- values  $c, d \in \mathbb{N}_0$  of counters C and D.

A **computation** of M is an infinite, initial, consecutive sequence

$$\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$$
 where

- $\langle i_0, c_0, d_0 \rangle = \langle 1, 0, 0 \rangle$ ,
- $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$  is a result executing instruction  $b_{i_j}$  at  $\langle i_j, c_j, d_j \rangle$  for all  $j \in \mathbb{N}_0$ .

A computation of M is called recurring iff  $i_j = 1$  for infinitely many  $j \in \mathbb{N}_0$ .

18/36

### Step 1: Choose Alphabet

- Given: Let M be a 2-counter machine with n instructions  $\{b_1, \ldots, b_n\}$ .
- Wanted: a Timed Büchi Automaton  $\mathcal{A}$  which accepts timed words which do not encode a recurring computation of M.

That is,  $\mathcal A$  should accept the complement of the set of timed words which do encode a recurring computation of M.

- Choose alphabet  $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}.$
- A configuration

$$\langle i, c, d \rangle \in \{1, \dots, n\} \times \mathbb{N}_0 \times \mathbb{N}_0$$

of  ${\cal M}$  is represented by the letter sequence

$$b_i \underbrace{a_1 \dots a_1}_{c \text{ times}} \underbrace{a_2 \dots a_2}_{d \text{ times}} = b_i a_1^c a_2^d$$

- 18 - 2018-01-23 - Suniv -

 $(\sigma, \tau)$  is in  $L_{undec}$  iff:

- $\sigma = b_{i_1} a_1^{c_1} a_2^{d_1} b_{i_2} a_1^{c_2} a_2^{d_2} \dots$ , and
- the prefix of  $\sigma$  with times  $0 \le t < 1$  encodes configuration  $\langle 1, 0, 0 \rangle$ , and
- the time of  $b_{i_j}$  is j, and
- For all  $j \in \mathbb{N}_0$ ,

• the time of  $b_{i_j}$  is j

- if  $c_{j+1}=c_j$ : for every  $a_1$  at time t in the interval [j,j+1] there is an  $a_1$  at t+1,
- if  $c_{j+1}=c_j+1$ : for every  $a_1$  at time t in the interval [j+1,j+2], except for the last one, there is an  $a_1$  at time t-1,
- if  $c_{j+1}=c_j-1$ : for every  $a_1$  at time t in the interval [j,j+1], except for the last one, there is an  $a_1$  at time t+1,



•  $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$ is a recurring computation of M, thus  $b_1$  occurs infinitely often.



20/36

### Construction Idea

 $(\sigma, \tau)$  is in  $L_{undec}$  iff:

- ullet  $\sigma = b_{i_1} a_1^{c_1} a_2^{d_1} b_{i_2} a_1^{c_2} a_2^{d_2} \ldots$  , and
- the prefix of  $\sigma$  with times  $0 \le t < 1$  encodes configuration  $\langle 1,0,0 \rangle$ , and
- the time of  $b_{i_j}$  is j, and
- For all  $j \in \mathbb{N}_0$ ,
  - the time of  $b_{i_j}$  is j.
  - if  $c_{j+1}=c_j$ : for every  $a_1$  at time t in the interval [j,j+1] there is an  $a_1$  at t+1,
  - if  $c_{j+1}=c_j+1$ : for every  $a_1$  at time t in the interval [j+1,j+2], except for the last one, there is an  $a_1$  at time t-1,
  - if  $c_{j+1}=c_j-1$ : for every  $a_1$  at time t in the interval [j,j+1], except for the last one, there is an  $a_1$  at time t+1,

and analogously for the  $a_2$ 's, and

•  $\langle i_1, c_1, d_1 \rangle$ ,  $\langle i_2, c_2, d_2 \rangle$ , . . . is a recurring computation of M, thus  $b_1$  occurs infinitely often.

 $(\sigma, \tau)$  is not in  $L_{undec}$  (i.e.  $(\sigma, \tau) \in \overline{L_{undec}}$ ) iff:

- (i) the prefix of  $\sigma$  with times  $0 \le t < 1$  doesn't encode  $\langle 1,0,0 \rangle$ , or
- (ii)  $b_i$  at time  $j\in\mathbb{N}$  is missing, or there is a spurious  $b_i$  at time  $t\in ]j,j+1[$ , or
- (iii) the configuration encoded in

$$[j+1, j+2[$$

doesn't faithfully represent the effect of instruction  $b_{ij}$  on the configuration encoded in [j,j+1[, or

(iv) the timed word is not recurring, i.e. it has only finitely many  $b_i$ .

## Step 2: Construct "Observer" for $\overline{L_{undec}}$

### **Wanted**: A TBA $\mathcal{A}$ such that

$$L(\mathcal{A}) = \overline{L_{undec}},$$

i.e.,  $\mathcal{A}$  accepts a timed word  $(\sigma, \tau)$  if and only if  $(\sigma, \tau) \notin L_{undec}$ .

#### Plan: Construct a TBA

- $A_0$  for case (ii) [missing  $b_i$  at time j, or spurious  $b_i$ ],
- $A_{init}$  for case (i) [initial configuration not encoded],
- $A_{recur}$  for case (iv) [not recurring], and
- $A_i$  for each instruction  $b_i$  for case (iii) [instruction effect not encoded].

#### Then set

$$\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{init} \cup \mathcal{A}_{recur} \cup \bigcup_{1 \leq i \leq n} \mathcal{A}_i$$

21/36

## Step 2.(ii): Construct $A_0$

(ii) The  $b_i$  at time  $j \in \mathbb{N}$  is missing, or there is a spurious  $b_i$  at time  $t \in ]j, j+1[$ .

Alur and Dill (1994): "It is easy to construct such a timed automaton."

- (i) The prefix of the timed word with times  $0 \leq t < 1$  doesn't encode  $\langle 1, 0, 0 \rangle$ .
- It accepts

 $\{(\sigma_{j}, \tau_{j})_{j \in \mathbb{N}_{0}} \mid (\sigma_{0} \neq b_{1}) \lor (\tau_{0} \neq 0) \lor (\tau_{1} \neq 1)\}. \quad b_{1}$ 

- 2018-01-23 - Suniv -

23/36

## Step 2.(iv): Construct $A_{recur}$

- (iv) The timed word is not recurring, i.e. it has only finitely many  $b_{\ell}$ .
- ullet  $\mathcal{A}_{recur}$  accepts words with only finitely many  $b_{\mathbf{\ell}}$ .



8 - 2018-01-23 - Suniv -

(iii) The configuration encoded in [j+1,j+2[ doesn't faithfully represent the effect of instruction  $b_i$  on the configuration encoded in [j,j+1[.

**Example**: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise.  $A_7$  is  $A_7^1 \cup \cdots \cup A_7^6$ .

- $\mathcal{A}_7^1$  accepts words with  $b_7$  at time j but neither  $b_3$  nor  $b_5$  at time j+1. "Easy to construct."
- $\mathcal{A}_7^2$  is



- $A_7^3$  accepts words which encode unexpected change of counter C.
- $\mathcal{A}_7^4, \dots, \mathcal{A}_7^6$  accept words with missing increment of D.

25/36

### Content

- Timed Büchi Automata
- → vs. Pure/Extended Timed Automata
- → timed word, timed language
- —(● accepting TBA runs
- language of a TBA
- The Universality Problem of TBA
- definition: universality problem
- → undecidability claim
- proof idea: 2-counter machines again
- construct observer for non-recurring computations
- Consequences
- the language inclusion problem
- the complementation problem
- Beyond Timed Regular

- 18 - 2018-01-23 - Scontent -

18 - 2018-01-23 - main -

27/36

## Consequences: Language Inclusion

- Given: Two TBAs  $A_1$  and  $A_2$  over alphabet B.
- Question: Is  $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$ ?

### Possible applications of a decision procedure:

- Characterise the allowed behaviour as  $A_2$  and model design behaviour as  $A_1$ .
- Automatically decide  $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$ , that is, whether the behaviour of the design is a subset of the allowed behaviour.
- If yes, design is correct wrt. requirement.
- If language inclusion was decidable, then we could use it to decide universality of  ${\cal A}$  by checking

$$\mathcal{L}(\mathcal{A}_{univ}) \subseteq \mathcal{L}(\mathcal{A})$$

where  $A_{univ}$  is any universal TBA (which is easy to construct).

- 18 - 2018-01-23 - Sjaund -

- Given: A timed regular language W over B (that is, there is a TBA  $\mathcal{A}$  such that  $\mathcal{L}(\mathcal{A}) = W$ ).
- Question: Is  $\overline{W}$  timed regular?

#### Possible applications of a decision procedure:

- Characterise the allowed behaviour as  $A_2$  and model design behaviour as  $A_1$ .
- Automatically construct  $A_3$  with  $L(A_3) = \overline{L(A_2)}$  and check

$$L(\mathcal{A}_1) \cap L(\mathcal{A}_3) = \emptyset,$$

that is, whether the design has any non-allowed behaviour.

- Taking for granted that:
  - The intersection automaton is effectively computable.
  - The emptyness problem for Büchi automata is decidable.
     (Proof by construction of region automaton Alur and Dill (1994).)

29/36

### Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA  $\mathcal{A}$  such that  $\mathcal{L}(\mathcal{A}) = W$ ).
- Question: Is  $\overline{W}$  timed regular?
- If the class of timed regular languages were closed under **complementation**, "the complement of the inclusion problem is recursively enumerable. This contradicts the  $\Pi_1^1$ -hardness of the inclusion problem." Alur and Dill (1994)

#### A non-complementable TBA A:

#### Complement language:

$$\overline{\mathcal{L}(\mathcal{A})} = \{(a^{\omega}, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance 1}\}.$$

- 18 - 2018-01-23 - Sjaund-

#### • Timed Büchi Automata

- → vs. Pure/Extended Timed Automata
- → timed word, timed language
- accepting TBA runs

#### The Universality Problem of TBA

- definition: universality problem
- undecidability claim
- oproof idea: 2-counter machines again
- construct observer for non-recurring computations

#### Consequences

- → the language inclusion problem
- the complementation problem
- Beyond Timed Regular

30/36

## Beyond Timed Regular

#### With clock constraints of the form

$$x + y \le x' + y'$$

we can describe timed languages which are not timed regular.

#### In other words:

- There are strictly more timed languages than timed regular languages.
- There exists timed languages L such that there exists no  $\mathcal{A}$  with  $L(\mathcal{A}) = L$ .

### Example:



$$\{((abc)^{\omega}, \tau) \mid \forall j . (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2})\}$$

32/36

### Content

#### Timed Büchi Automata

- ✓• vs. Pure/Extended Timed Automata
- → timed word, timed language
- —(● accepting TBA runs
- language of a TBA

### The Universality Problem of TBA

- definition: universality problem
- → undecidability claim
- oproof idea: 2-counter machines again
- construct observer for non-recurring computations

#### Consequences

- the language inclusion problem
- the complementation problem
- Beyond Timed Regular

- 18 - 2018-01-23 - Scontent -

- Timed Büchi Automata accept timed words,
   Pure / Extended Timed Automata
   "produce" computation paths.
  - Different views on the same phenomenon.
- A set of timed words L is called <u>timed regular</u> if there exists a TBA whose language is L.
- Decidability results for Timed Büchi Automata
  - Emptyness: decidable (region construction)
  - Universality: undecidable (2-counter automata)
  - Language Inclusion: undecidable (universality)
  - Complementation: undecidable (non-compl'able TBA)
- Beyond Timed Regular
  - with more expressive clock constraints,
  - automata can accept non-timed regular languages.

34/36

### References

## References

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2):183-235.

Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

-18 - 2018-01-23 - main

36/36