Real-Time Systems

Lecture 6: DC Properties I

2017-11-14

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

 Observables and Evolutions
 Duration Calculus (DC)
 Semantical Correctness Proofs
 DC Decidability
 DC Implementables Content Introduction PLC-Automata $obs:\mathsf{Time} \to \mathscr{D}(obs)$ Timed Automata (TA), Uppaal
Networks of Timed Automata
Region/Zone-Abstration
TA model-checking
Extended Timed Automata
Undecidability Results $\langle obs_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle obs_1, \nu_1 \rangle, t_1 \dots$

Recall: Predicate Calculus

Recall: Calculus

 $\bullet\;$ A proof system or calculus $\mathcal C$ is a finite set of proof rules of the form

consisting of
$$\overbrace{\{\stackrel{F_1,\dots,F_n}{F}\}}_{\text{emption}} \underbrace{\stackrel{\text{ond}(F_1,\dots,F_n,F)}{\text{where } cand(F_1,\dots,F_n,F)}}_{\text{emption}}$$

 $\bullet \,$ In case n=0, the rule is called axiom and written as

F where cond(F)

If the application condition is a tautology, we may omit it.

4/38

Content

A Calculus for D.C.A brief outlook
 Recall: predicate calculus
 DC Calculus is just the same, just a few more rules
 → cf. textbook Olderog/Dierks

Decidability Results for DC: Motivation

- ROC in Discrete Time
 Retricted DC syntax
 Discrete time interportation of RDC
 Discrete via continuous time
 The satisfiability problem for RDC / discrete time
 The tanguage of a formula

Recall: Proofs in a Calculus

The central concepts of a calculus are that of proof and provability. • A proof of a formula \underline{F} in \underline{C} from a set of formulae $\underline{\mathcal{H}}$ is a finite sequence

such that each formula G_i , $1 \le i \le m$,

ullet G_i is in ${\mathcal H}$ (called assumption or hypothesis), or

* G_i is an axiom of $\mathcal C$. * G_i is a conclusion of a rule in $\mathcal C$ applied to some predecessor formulae in the proof, i.e. there exists a proof rule

(4)
$$\frac{F_1, \dots, F_n}{G_i}$$
 where $cond(F_1, \dots, F_n, G_i)$

s.t. $F_1, \ldots, F_n \subseteq \{G_1, \ldots, G_{i-1}\}$ and $cond(F_1, \ldots, F_n, G_i)$ holds.

Recall: Soundness and Completeness of a Calculus

• A calculus C is called sound if and only if (ar conrect)

 $\mathcal{H} \vdash_{\mathcal{C}} F \text{ implies } \mathcal{H} \models F$

```
\text{for all interpretations } \mathcal{I}. \ \text{if } \underline{\mathcal{I}} \sqsubseteq \underline{G} \ \text{for all } G \in \mathcal{H} \ \text{then } \underline{\mathcal{I}} \sqsubseteq \underline{F}. \bullet \ \text{To be useful a calculus (for DQ should be sound.}
                                                                                                                                                                                                                                   In case of DC, "\mathcal{H} \models F" means:
                                                                                                                                                                                                                                                                                                                    "whenever F is (syntactically) derivable from \mathcal H in \mathcal C, then F is implied by \mathcal H semantically."
```

A Calculus for DC

ullet A calculus ${\mathcal C}$ is called complete if and only if

 $\mathcal{H} \models F \text{ implies } \mathcal{H} \vdash_{\mathcal{C}} F$

Due to reasons of computability, we cannot always have completeness

Example: Predicate Calculus

Recall: Theorems of a Calculus

 $\bullet \;$ We say, F is provable from $\mathcal{H} = \{H_1, \ldots, H_k\}$ in \mathcal{C} , in symbols

if and only if there exists a proof of F from $\mathcal H$ in $\mathcal C$.

• T: It is Tue or Thu

between I4:00 and I6:00 0: T: \Rightarrow R (on Tue/Thu times, I'm at RTS lecture)

• E: If in orderd

• E: If modeld

• E: If modeld

• E: If model \oplus $\neg E$ (in not excited now)

Some predicate calculus proof rules: can furposition. Proof proof

• A formula F with $\vdash_{\mathcal{C}} F$ is called a theorem of \mathcal{C} . ullet If ${\mathcal C}$ is clear from the context, we may omit the index. • write $H_1,\ldots,H_k \vdash_{\mathcal{C}} F$ instead of $\{H_1,\ldots,H_k\} \vdash_{\mathcal{C}} F$; • write $\vdash_{\mathcal{C}} F$ instead of $\emptyset \vdash_{\mathcal{C}} F$;

8/38

A Sound Calculus for DC

10000

A Sound Calculus for DC

A Sound Calculus for DC

TO PERSON OF THE PERSON OF THE

1000

The first term of the first te

 $\begin{pmatrix} (F(G),H) & \longrightarrow (F(G),H) \\ \text{Out-Ann} & ((F(G),Y - (F(G))) & = ((F(G),Y - (F(G))) \\ \text{Out-Ann} & \text{Out-Ann} \\ ((G,Y) & \longrightarrow (F(G),H) & \text{Out-Ann} \\ ((G,Y) & \longrightarrow (F(G),H) & \text{Out-Ann} \\ ((G,Y) & \text{Out-Ann} \\ \text{Out-Ann} & ((G,Y) & \text{Out-Ann} \\ ((G,Y) & \text{Out-Ann} \\ \text{Out-Ann} & \text{Out-Ann} \\ \end{pmatrix}$

Interval Logic

 $\begin{array}{c|c} F & \longrightarrow G \\ \hline -(-F;G) & (F:H) \Longrightarrow (G:H) \\ F & \longrightarrow G \\ \hline -(G:(-F)) & (H:F) \Longrightarrow (H:G) \\ \hline \text{Necessary} & (Dop-Mon \\ \hline \end{array}$

 $(z\geq 0 \land y\geq 0) \implies \{(\ell=x+y) \iff (\ell=x)\colon (\ell=y)\}$ Add-Leigh

A Sound Calculus for DC

A STATE OF THE STA

 $\int P + \int Q = \int (P \wedge Q) + \int (P \vee Q)$ $(\int P = x) \cdot (\int P = y) \implies \int P = x + y$ Dur-Chop

Durations

Induction

 $\int 1 = \ell$ Dur-One

 $\begin{array}{c} \text{where} \\ \int P = \int Q & P \iff Q \text{ is} \\ \text{a tautology} \\ \text{Dur-Logic} \end{array}$

Example

		(3)	2	3
Induction-L	(4) F	$F: [\neg P] \Longrightarrow F$	$F:[P] \Longrightarrow F$	⇒ F
	1	(3)	(2)	Ξ

 (2): assume E; [P]. (1): obvious Proof: Use the Induction-L rule. Claim: E is valid.

Let P be a state assertion in $E:=\lceil\rceil\vee(true\,;\,\lceil P\rceil)\vee(true\,;\,\lceil \neg P\rceil)$

 $\begin{array}{ll} \bullet \; {\rm from \; axiom} \; E \implies true, \\ {\rm we \; can \; derive} \; (E\,;[P]) \implies (true\,;[P]) \end{array}$

 $F \implies G$ $\overline{(F;H)} \implies \overline{(G;H)}$ Chop-Mon

 $\begin{array}{ccc} F, & F \implies G \\ & G \\ & \text{modus ponens} \end{array}$

From assumption (E; [P]), we can derive (true; [P]) using modus ponens.
Thus E; [P] ⇒ E. (3): similar

by rule Chop-Mon

12/38

Special Cases of Induction

Remark 2.30. For the case $F=(\Box F_1 \implies F_2)$, the premises (2) and (3) of Induction–R can be reduced to

 $(\Box F_1 \wedge F_2; \lceil \neg P \rceil) \implies F_2$ $(\Box F_1 \wedge F_2; \lceil P \rceil) \implies F_2$

(3')

Content

A Complete Calculus for DC?

Theorem 2.23.

A sound calculus for DC formulas cannot be complete.

- A Calculus for DC. A brief outbook
 Recalt predicate calculus
 BC Calculus is just the same, just a few more rules
 From the control of the calculus is just the same, just a few more rules
 From From Calculus is just the same.
- Decidability Results for DC: Motivation
- RDC in Discrete Time

Reasons for the necessary incompleteness of sound calculi: validity of DC formulae may depend on facts of the real numbers.
 For instance, the fact that every real number is bounded by some natural number (as in the proof of 2.23).

We only cite: it is impossible to give a complete set of proof rules that characterise all valid facts of the reals.

What we can have is relative completeness in the following sense:

Given an "oracle" for the valid arithmetic formulae over reals, we can always find a proof of F from $\mathcal H$.

- (e The language of a formula

The proof system presented earlier is of such a kind.

13/38

Special Cases of Induction

 $\begin{array}{c} (1) & || \Rightarrow F \\ (2) & F: |P| \Rightarrow F \\ (3) & F: |\neg P| \Rightarrow F \\ (4) & || \text{Induction-L} \\ \end{array}$

 $\begin{array}{c|c} (1) & |\cdot| \implies F \\ (2) & |P|:F \implies F \\ (3) & |\neg P|:F \implies F \\ \hline (4)F \\ & \text{Induction-R} \end{array}$

Remark 2.31. For the case $F=(\Box F_1 \implies \Box F_2)$, the premises (2) and (3) of Induction-R can be reduced to $(\Box F_1 \wedge \Box F_2; \lceil P \rceil) \implies F_2$

 $(\Box F_1 \wedge \Box F_2; \lceil \neg P \rceil) \implies F_2$

(2)

13/38

DC Properties

Decidability Results: Motivation

Given plant assumptions as a DC formula 'Asm' over the input observables, verifying correctness of 'Ctrl' wrt. requirements 'Req' amounts to proving $\models_0 \mathsf{Ctrl} \land \mathsf{Asm} \implies \mathsf{Req}$

If 'Asm' is not satisfiable then (1) is trivially valid, thus each (!) 'Ctrl' is (trivially) correct wrt. 'Req.'

3

So: there is a strong interest in assessing the satisfiability of DC formulae.

Question: is there an automatic procedure to help us out? (IOW: is it decidable whether a given DC formula is satisfiable?)

Interesting for 'Req': is Req realisable (from 0)?

• Question: is it decidable whether a given DC formula is realisable?

Decidability Results for Realisability: Overview

Fragment RDC	Discrete Time decidable	Continous Time decidable
RDC	decidable	
$RDC + \ell = r$	decidable for $r \in \mathbb{N}$	undec
$RDC + \smallint P_1 = \smallint P_2$	undecidable	
$RDC + \ell = x, \forall x$	undecidable	
DC	- 4 -	Ì

17/38

Discrete Time Interpretations of Observables

Restricted DC (RDC) — Syntax

 \bullet An interpretation $\mathcal I$ is called discrete time interpretation if and only if, for each state variable X , $X_{\mathcal{I}}: \mathsf{Time} o \mathcal{D}(X)$

with $\mathsf{Time} = \mathbb{R}_0^+$, all discontinuities are in $\mathbb{N}_0.$

A discrete time interpretation

Integral f and length ?? "Hidden in f P.
Predicate and function symbols? No.
For some subinterval '0F? In a minute.
Empty interval '||? In a minute.

First observations (vs. full DQ):
No global variables (thus don't need V in semantics).
Chop operator is there.

where P is a state assertion over only boolean observables.

 $F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \vee F_2 \mid F_1 \, ; F_2$

21/38

20/38

RDC in Discrete Time

19/38

Discrete Time Interpretation of RDC Formulae

$F := \lceil P \rceil \mid \neg F_1 \mid F_1 \vee F_2 \mid F_1 : F_2$

- An interval $[b,e]\subset \operatorname{Intv}$ is called discrete if and only if $b,e\in\mathbb{N}_0.$
- $\bullet~$ We say (for a discrete time interpretation $\mathcal I$ and a discrete interval [b,e])

$$\mathcal{I}, [b,e] \models F_1 \mathbin{;} F_2$$

if and only if there exists $m \in [b,e] \underbrace{\bigcap \mathbf{N}_0}_{}$ such that

$$\mathcal{I}, [b,m] \models F_1$$
 and $\mathcal{I}, [m,e] \models F_2$

 $\bullet~$ The interpretations of ' \lor ' and ' \neg ' remain unchanged.

$$[b,e] \mid= \lceil P \rceil \text{ if and only if } \int_b^e P_{\mathcal{I}}(t) \ dt = (e-b) \text{ and } e-b > 0.$$

• $\mathcal{I}, [b,e] \models \lceil P \rceil$ if and only if $\int_b^e P_{\mathcal{I}}(t) \ dt = (e-b)$ and e-b>0.

Differences between Continuous and Discrete Time Let P be a state assertion. $\models^?(\lceil P\rceil;\lceil P\rceil)$ Discrete Time allet e-6:2

([P];[P]) \models [?] $[P] \Longrightarrow$ $\Rightarrow [P]$ \$X 14/ smallet e-5 / FP7 ezb //// er

23/38

Differences between Continuous and Discrete Time

Let P be a state assertion.

$ =^{i}[P] \Longrightarrow (P)$	$\models^{?}([P];[P])$ $\Rightarrow [P]$	
		Continuous Time
×	ζ.	Discrete Time

 $\bullet \ \ \text{In particular} : \ell = 1 \iff (\lceil 1 \rceil \land \neg (\lceil 1 \rceil ; \lceil 1 \rceil)) \ \text{(in discrete time)}.$

23/38

Decidability of Satisfiability/Realisability from 0

Decidability Results for RDC in Discrete Time

Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9. The realisability problem for RDC with discrete time is decidable.

25/38

Expressiveness of RDC

• $\ell = 1$ • $\ell = 0$ • $\int P < k$ • $\int P > k$ $\begin{array}{ll} \bullet & fP = 1 & \iff \left(fP = 0 \right), \left(fP = \lambda e^{\lambda} \right), \left(fP = 0 \right) \\ \bullet & fP = k+1 & \iff \left(fP = k \right), \left(fP = \ell \right) \\ \bullet & fP \geq k & \iff \left(fP = k \right), \text{ for } \end{array}$ • $\int P = 0$ • true • $\int P \leq k$ $\Rightarrow \int P \ge k+1$ $\Rightarrow \neg (\int P > L)$ $\Rightarrow \int P \le k-1$ $\Leftrightarrow [1] \land \neg ([1];[1])$ $\Leftrightarrow \neg [\pi]$ $\Leftrightarrow \xi = 0 \lor \neg (\ell - \sigma)$ \$ [7P]V €=0

♦ ∓ = toue, ∓, true

24/38

Sketch: Proof of Theorem 3.6

- Give a procedure to construct, given a formula F , a regular language $\mathcal{L}(F)$ such that $\mathcal{I}, [0,n] \models F \text{ if and only if } w \in \mathcal{L}(F)$

where word w describes \mathcal{I} on [0,n] (suitability of the procedure: Lemma 3.4).

- Then F is satisfiable in discrete time if and only if $\mathcal{L}(F)$ is not empty (Lemma 3.5).

- . Theorem 3.6 follows because $*\ \mathcal{L}(F) \ {\rm can\ effectively\ be\ constructed},$ $*\ {\rm the\ emptyness\ problem\ is\ decidable\ for\ regular\ languages}.$

Alphabet of a Formula

- * alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F. * a letter corresponds to an interpretation on an interval of length 1.
- a word of length n describes an interpretation on interval [0,n].
- Example: Assume F contains exactly state variables X,Y,Z, then

 $\Sigma(F) = \{X \land Y \land Z, \quad X \land Y \land \neg Z, \quad X \land \neg Y \land Z, \quad X \land \neg Y \land \neg Z, \\ \neg X \land Y \land Z, \quad \neg X \land Y \land \neg Z, \quad \neg X \land \neg Y \land Z, \quad \neg X \land \neg Y \land \neg Z\}.$

2 3 4^{Time} $w = (\neg X \land \neg Y \land \neg Z)^{E}$ $(X \land \neg Y \land \neg X)^{E}$ $(X \wedge V \wedge Z)$ $\cdot (X \wedge Y \wedge Z) \in \Sigma(F)^*$

Construction of the Language $\mathcal{L}(F)$ of Formula F

Lemma 3.4

Lemma 3.4. For all RDC formulae F, discrete interpretations $\mathcal{I}, n \geq 0$, and all words $w \in \Sigma(F)^*$ which describe \mathcal{I} on [0,n].

 $\mathcal{I}, [0,n] \models F \text{ if and only if } w \in \mathcal{L}(F)$

Proof: By structural induction.

Base case: F = [P]:

• Let $w=a_1,\dots,a_n,n\geq 0$, describe $\mathcal I$ on [0,n]. • $\mathcal I,[0,n]\models [P]$

 $\iff n \geq 1 \text{ and } \forall \, 1 \leq j \leq n \bullet a_j \in DNF(P) \\ \iff w \in \widetilde{DNF(P)}^+ \iff w \in \widetilde{\mathcal{L}(F)}$

31/38

 $\iff n \geq 1 \text{ and } \forall 1 \leq j \leq n \bullet \mathcal{I}, [j-1,j] \models (\![P] \land [a_j]\!) \text{and } a_j \in DNF(P)$

 $\iff n \geq 1 \text{ and } \forall \, 1 \leq j \leq n \bullet \mathcal{I}, [j-1,j] \models \lceil P \rceil$

 $\iff \mathcal{I}, [0, n] \models \lceil P \rceil \text{ and } n \geq 1$

• Note: Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=1}^m a_i$ with $a_i \in \Sigma(F)$.

• Set $DNF(P) := \{a_1, \dots, a_m\} \subseteq \Sigma(F)$.

- Define L(F) inductively: $\mathcal{L}(\neg F_1) = \Sigma(F)^* \setminus \mathcal{L}(F_1),$ $\mathcal{L}(\lceil P \rceil) = DNF(P)^+,$

 $\mathcal{L}(F_1; F_2) = \mathcal{L}(F_1) \cdot \mathcal{L}(F_2).$

 $\mathcal{L}(F_1 \vee F_2) = \mathcal{L}(F_1) \cup \mathcal{L}(F_2),$

30/38

Words vs. Interpretations

Definition 3.2. A word $w=a_1\dots a_n\in \Sigma(F)^*$ with $n\geq 0$ describes a discrete interpretation $\mathcal I$ on [0,n] if and only if For n=0 we set $w=\varepsilon$. $\forall j \in \{1,\dots,n\} \, \forall t \in]j-1,j[:\mathcal{I}[\![a_j]\!](t)=1.$

* Note: Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=a_i}^m a_i$ with $a_i \in \Sigma(F)$.

* Set $DNF(P) := \{a_1, \dots, a_m\} \ (\subseteq \Sigma(F))$.

* $\sum_{k=a_i}^{n} \sum_{j=a_i}^{n} \sum_$

Define L(F) inductively:

 $\mathcal{L}(F_1 \vee F_2) = \mathcal{K}(\mathcal{F}_2) \cup \mathcal{K}(\mathcal{F}_2)$ $\mathcal{L}(F_1; F_2) = \mathcal{L}(\mathcal{F}_{\mathbf{z}}) - \mathcal{L}(\mathcal{F}_{\mathbf{z}})$

 $\begin{array}{c} \mathcal{L}(\lceil P \rceil) = \mathcal{DMF}(?) \not= \int \mathcal{L}(f_*) \int \mathcal{L}(f_*) \cdot \int \mathcal{L}(f_*)$

Construction of the Language $\mathcal{L}(F)$ of Formula F

• Example: word w describes $\mathcal I$ on [0,4].

$$\begin{split} \Sigma(F) &= \{X \land Y \land Z, \quad X \land Y \land \neg Z, \quad X \land \neg Y \land \neg Z, \quad X \land \neg Y \land \neg Z, \\ \neg X \land Y \land Z, \quad \neg X \land Y \land \neg Z, \quad \neg X \land \neg Y \land \neg Z, \quad \neg X \land \neg Y \land \neg Z\}. \end{split}$$

30/38

Lemma 3.4 Cont'd

Lemma 3.4. For all RDC formulae F, discrete interpretations $\mathcal{I}, n \geq 0$, and all words $w \in \Sigma(F)^*$ which describe \mathcal{I} on [0,n], $\mathcal{I}, [0,n] \models F$ if and only if $w \in \mathcal{L}(F)$

Proof: By structural induction.

- Induction steps: F = ¬F₁:
- Let $w=a_1,\dots,a_n,n\geq 0$, describe $\mathcal I$ on [0,n]. $\mathcal I,[0,n]\models \neg F_1$
- $\iff w \notin \mathcal{L}(F_1)$ $\iff \ \operatorname{not} \, \mathcal{I}, [0,n] \models F_1$

 $\iff w \in \widehat{\underline{\mathcal{L}(F_2)}}$ $\iff w \in \widehat{\underline{\mathcal{L}(-F_1)}}$ $\bullet F_1 \vee F_2, F_1 : F_2 : \mathsf{sim} \mathsf{har}$

Sketch: Proof of Theorem 3.9

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

- $* \ kern(L) \ contains all \ words of \ L \ whose \ prefixes are again in \ L. \\ * \ if \ L \ is \ regular, then \ kern(L) \ is also \ regular. \\ * \ kern(L(F)) \ can \ effectively \ be \ constructed.$

We have

Lemma 3.8. For all RDC formulae F,F is realisable from 0 in discrete time if and only if $kem(\mathcal{L}(F))$ is infinite.

Infinity of regular languages is decidable.

33/38

Tell Them What You've Told Them...

- A sound calculus for DC exists, a complete calculus does not exist
- Knowing the (sound) proof rules may also be useful when conducting correctness proofs manually.

- For Restricted DC in discrete time.

- satisfiability is decidable.
 Proof idea: reduce to regular languages.

- \rightarrow see the textbook for the details

References

- Decidability of, e.g., satisfiability of DC formulae is interesting.
- A decision procedure could analyse, e.g., whether plant assumptions Asm are (at least) satisfiable.

36/38

Decidability Results for Realisability: Overview

Content

- "	Ī	R
undecidable	undecidable	$RDC + \ell = x, \forall x$
undecidable	undecidable	$RDC + \int P_1 = \int P_2$
undecidable for $r \in \mathbb{R}^+$	decidable for $r \in \mathbb{N}$	$RDC + \ell = r$
decidable	decidable \checkmark	RDC
Continous Time	Discrete Time	Fragment

Restricted DC syntax

Discrete time interpretation of RDC

Discrete via minimization of RDC

Discrete via minimization free

The satisfiability problem for RDC / discrete time

The language of a formula

Decidability Results for DC: Motivation

RDC in Discrete Time

A Calculus for D.C. A brief outlook
Recall: predicate calculus
DC Calculus is just the same, just a few more rules
Of textbook Olderog/Dierks

35/38

References
Olderag, E.-R. and Devis, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification.
Cambridge University Press.