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Recall: Predicate Calculus
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+ Duration Calculus (DC) *+ Networks of Timed Automata

« Semantical Correctness Vaomm,\ ° zmm_O:\NO_J”v)Um:wnn_O:
¢ Decidabiny 7 + TAmodel-checking

° « Extended Timed Automata

+ DC Implementables

* PLC-Automata

obs : Time — 2(obs) (0bso, vo),to 22 (0bsy, 1), t1...

« Automatic Verification.
.whether a TA satisfies a DC formula, observer-based
* Recent Results:

« Timed Sequence Diagrams, or Quasi-equal Clocks,
or Automatic Code Generation, or ...
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Recall: Calculus
» A proof system or calculus C is a finite set of proof rules of the form
Y
i Fr )
consisting of:
o premise,~ w70
« conclusion,
« application condition (has to be decidable).
e Incasen = 0, the rule is called axiom and written as
F where cond(F)
.o If the application condition is a tautology, we may omit it.
47 5

Content

o A Calculus for DC: A brief outlook

o Recall predicate calculus

= DC Calculus s just the same, just a few more rules
o —» cf. textbook Olderog/Dierks

« Decidability Results for DC: Motivation
RDC in Discrete Time

» Restricted DC syntax

e Discrete time interpretation of RDC
« Discrete vs. continuous time
The satisfiability problem for RDC / discrete time

L« The langusge of a formula

Recall: Proofs in a Calculus

The central concepts of a calculus are that of proof and provability.
 Aproof of aformula F in C from a set of formulae # is a finite sequence
R W G
T
&G

G

such that each formula G;, 1 < i < m,

* G;isin # (called assumption or hypothe:
» G;isanaxiomof C,

), o

» G, is aconclusion of a rule in C applied to some predecessor formulae in the
proof, i.e. there exists a proof rule

JATTTT
G
st Fi.....F, C{G.....Gi_1} and cond(Fy. ... F,..G;) holds.

() where cond(F, ..., Fy,G;)



Example: Predicate Calculus

o T: itisTueor Thu Assumptions H:

between14:00and16:00 /(1)) (0 Tue/Thu times, Im at RTS lecture)
« R Iminthe RTS lecture >

o B Imexcited
Claim: # = -T
Some EM_W%\WW\@% proof pufes:  carbiapun e, paodes s
W2= — ®-L=1 [GESATEE
p = g = -p q
® @
\/
apply (A)
i
T = E

Recall: Soundness and Completeness of a Calculus

» Acalculus C is called sound if and only if
o conect )
H be FimpliesH |= F
“whenever F is (syntactically) derivable from # in C,
then F is implied by H semantically”.

In case of DC, “H |= F" means:

for all interpretations Z, if Z |= G forall G € H then \NT_NWJ
redise

« To be useful, a calculus (for DC) should be sound.

o Acalculus C is called complete if and only if
H | FimpliesH ¢ F

« Due to reasons of computability, we cannot always have completeness.

Example: Predicate Calculus

o T: itisTue or Thu Assumptions H:
between 14:00 and 16:00

* R: Iminthe RTS lecture
* E: Imexcited

@© T == R (onTue/Thu times, I'm at RTS lecture)
@ R = E (intheRTS lecture, Im excited)

@ —E (Im not excited now)

Claim: H |= T (If 7 hold, it's not Tue/Wed 14:00-16:00 now.)
Some predicate calculus proof rUles: s o e, i
Wwr=9e ¢=r B L= P=4q p
p = T -q = -p q
o @
\/
apply (A)
v
T = E
apply (8)
v
—E = =T @
N /7
apply (C)
v
=T Thus H + —T.

A Calculus for DC

Recall: Theorems of a Calculus

« Wesay, F'is provable from H = {H,,..., H;.} inC, in symbols

HicF,

if and only if there exists a proof of F from # in C.

o Notation:
o write Hy,..., Hy ¢ Finsteadof {Hy.,... . Hy} ¢ F;
o write ¢ Finstead of ) ¢ F;

o If Cis clear from the context, we may omit the index.

o Aformula F with ¢ F is called a theorem of C.

A Sound Calculus for DC




A Sound Calculus for DC

F, F = G F
G VreF
modus ponens -Introduction
F is chop- . F is chop-
where free or 0 is a Hlr:=0) where free or ¢ is a
rigid term Jzel rigid term
mination 3-Introduction
Predicate Calculus
T3
A Sound Calculus for DC

where
J0=0 1=t [P>0 [P=1Q P Qs
Dur-Zero Dur-One Dur-Pos 2 tautology
Dur-Logic
TPHIQ=](PAQ+I(PVQ) (JP=2):(P=y) = [P=z+y
Dur-Add Dur-Chop
Durations

s

A Sound Calculus for DC

r=u =y = y=ux

Reflexivity Symmetry Transitivity

7 (r=yhy=2) — z=2

(@1 =y A Axn =yn)
(T1 =y A A2y = yn)

Leibniz-Property

Axiomatisation of Equality

Tz

A Sound Calculus for DC

(1) [l=F (1) = F
(2) Fi[P] = F (2) [P]:F = F
3) F;[-P] = F 3) [-P];F = F
@) F @F
Induction-L Induction-R
Induction

Tz

A Sound Calculus for DC

(@iF) = F_riidlomda

(F:G) = F whew Fia
Chop-Elim

—o = ~h
@20/y20) = (=r1y) = C=n:(=1) 7
iF) = S((f=
Ao
Chop-sengtn
F =X
6 | | wem = @m
P v F—c
i =G (-F)) (H:F) = (H:G)
: Necesy Ghop-ten
Interval Logic e
Example 0 M= F n [1=F
—_— (2) Fi[P] = F (2) [Pl;F — F
(3) F;[-P] = F (3) [-P]iF = F
o) F () F
Induction-L Induction-R

Let P be a state assertion in E := [ V (true; [P]) V (true; [~P])
Claim: £ is valid.

Proof: Use the Induction-L rule.

o (1): obvious
o (2):assume E; [P].

we can derive : (F:H) = (G:H)
by rule Chop-Mon

128



Example o Special Cases of Induction Special Cases of Induction
(2)
(3)
, (1) [ =F (1) [| = F (1) = F (1) [| = F
Induction-L Induction-R (2) Fi[P] = F (2) [PliF = F @) Fi[Pl = F (2) [PliF = F
(38) Fi[-P] = F (3) [-Pl:iF = F () Fi[-P] = F (3) [-PliF = F
WF mF WF WF
Let P be a state assertion in £ := [V (true ; [P]) V (true ; [~P]) Induction-L Induction-R Induction-L Induction-R
Claim: E is valid.
Proof: Use the Induction-L rule.
= (1): obvious
* (2): assume E; [P]. 7 G Remark 2.30. For the case F = (OF, — F3), Remark 2.31. For the case F = (OF; — OF),
« fromaxiom E = true, _ =6 the premises (2) and (3) of Induction-R can be reduced to the premises (2) and (3) of Induction-R can be reduced to
we can derive (E; [P]) = (true; (3 H) = (G;H)
B true ; [P])
Chop-Mon (QF AR [P]) = F (OF AOF; [P]) = F
by rule Chop-Mon
« From assumption (£'; [P]), F, F — G (OF AP [-P]) = B (OFRAOF;[-P]) = B
we can derive (true ; [P]) G
using modus ponens. modus ponens
e Thus E;[P] = E.
o (3): similar 1273 133 138
A Complete Calculus for DC? Content
A Calculus for DC: A brief outlook
Theorem 2.23. » Recall: predicate calculus
A sound calculus for DC formulas cannot be complete. « DC Calculus is just the same, just a few more rules

« — cf textbook Olderog/Dierks f\

» Decidability Results for DC: Motivation

Reasons for the necessary incompleteness of sound calculi: DC chinx.:.n s
validity of DC formulae may depend on facts of the real numbers.
For instance, the fact that every real number is bounded by some natural number = RDCin Discrete Time
(as in the proof of 2.23). « Restricted DC syntax

@ Discrete time interpretation of RDC

We only cite: it is impossible to give a complete set of proof rules that characterise

N » Discrete vs. conti t
all valid facts of the reals. iscrete vs. continuous time

« The satisfiability problem for RDC / discrete time

» What we can have The language of a formula

relative completeness in the following sense:

Given an “oracle” for the valid arithmetic formulae over reals,
we can always find a proof of £ from 7.

=

The proof system presented earlier is of such a kind.
1473 15738 16138



Decidability Results: Motivation

o Recall:

Given plant assumptions as a DC formula ‘Asm’ over the input observables,
verifying correctness of ‘Ctrl’ wrt. requirements ‘Req’ amounts to proving

k= Ctrl A Asm = Req [0}

If‘Asm’is not satisfiable then (1) is trivially valid,
thus each (!) ‘Ctrl'is (trivially) correct wrt. ‘Req’

So: there is a strong interest in assessing the satisfiability of DC formulae.

is there an automatic procedure to help us out?
decidable whether a given DC formula is satisfiable?)

o Interesting for ‘Req is Req realisable (from 0)?
« Question: is it decidable whether a given DC formula is realisable?

Restricted DC (RDC) — Syntax

Fu=[Pl|-~F |AVE | R

where P s a state assertion over only boolean observables.

First observations (vs. full DC):

« No global variables (thus don't need V in semantics).
» Chop operator is there.

o Integral ‘[ "and length ‘?  “Hidden”in [ P.

o Predicate and function symbols?  No.

« For some subinterval ‘(0 F?  In aminute.

» Emptyinterval []?  Inaminute.

20

Decidability Results for Realisability: Overview
Fragment Discrete Time Continous Time
RDC decidable decidable
RDC+ (=7 decidable for € N undecidable for r € R*
RDC+ [P, =[P, undecidable undecidable
RDC + (= ua, Y& undecidable
DC —r— —_—.—

1873
Discrete Time Interpretations of Observables
» Aninterpretation Z is called discrete time interpretation if and only if, for each
state variable X,
Xz : Time — D(X)
e = Ry, all discontinuities are in IN,
1 1
Xz Xz
0 0
by b
IF 2 3 Time 12 3 Time
Not a discrete time interpretation. Adiscrete time interpretation.
21

RDC in Discrete Time

1978

Discrete Time Interpretation of RDC Formulae

Fu=[P||-F|FVE|F:F

o Aninterval [b,e] C Intv is called discrete if and only if b, e € IN,.

» We say (for a discrete time interpretation 7 and a discrete interval [b, e])
I.be] = Fii Py
if and only if there exists m € [b, ¢] N Ny such that

Lbml =R and  T[me = F

« The interpretations of v’ and ‘~" remain unchanged.

o I,[b,e] = [P]ifandonlyif f{ Pr(t)dt = (e —b)and e — b > 0.

22



Differences between Continuous and Discrete Ti

« Let P’ be a state assertion.

Continuous Time Discrete Time
erapey | M
=P wX - X NI
A I Vi -
aPLIED | X - o 7
et
L el P
Svallit 0L

Decidability Results for RDC in Discrete Time

pEZY

25738

Differences between Continuous and Discrete Time

o Let P be a state assertion.

Continuous Time Discrete Time
E’ ([P1:[P)) v v
= [P]
P =1, X
(TP1:[P1)

o Inparticular: £ =1 <= ([1] A—=([1];[1])) (in discrete time).

Decidability of Satisfiability/Realisability from 0

Theorem 3.6.

The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

s of RDC
o l= = [1]A (173 111)
e =0 = ]
o true = ¢=0v(e-0)

e [P=0 = [-P1v ¢=0

e fP=1 — A\\vu&\mﬁm?%:\.\bﬁ&
o [P=k+1 < ([P=k);(IP=1)

[Pk = ([P =) A

e P>k =[Pk

e [P<k = a(/P>L)

e [P<k = SP2k-1

where k € IN.

CF = oo, F, e

2373 2473

Sketch: Proof of Theorem 3.6

» Give a procedure to construct, given a formula F, a regular language £(F') such that
Z,[0,n] |= Fifandonly if w € L(F)

where word w describes Z on [0, n]
(suitability of the procedure: Lemma 3.4).

« Then F is satisfiable in discrete time if and only if £(F) is not empty
(Lemma 3.5).

» Theorem 3.6 follows because
o L(F) can effectively be constructed,
« the emptyness problem is decidable for regular languages.

2673 2758



Alphabet of a Formula
o Idea:
« alphabet ¥(F) consists of basic conjuncts of the state variables in F,
o aletter corresponds to an interpretation on an interval of length 1,
« aword of length n describes an interpretation on interval [0, .
« Example: Assume F contains exactly state variables X, Y, Z, then

B(F)={XAYAZ XAYA-Z XA-YAZ XA-YA~Z

SXAYAZ ~XAYAN-Z ~XA-YANZ ~XAY A-Z)

w=

X A-Y A7)
XAY A—Z)

Construction of the Language L(F') of Formula F

« Note: Each state assertion P can be transformed
into an equivalent disjunctive normal form \/"" | a; with a; € £(F).

o Set DNF(P) := {ay.....a,} (€ S(F)).
« Define £(F) inductively:
L([P]) = DNF(P)*,
L(~F) = 2(F)"\ L(F),
L(FV Fy) = L(F1)UL(F),
L(Fy; F2) = L(Fy) - L(Fy).

26
-X A=Y A-Z)

XAY AZ)€X(F)

283

307

Words vs. Interpretations

Definition 3.2. Aword w = ay ... a, € S(F)* withn > 0
describes a discrete interpretation Z on [0, 7] if and only if

Vie{l,...,n}vte]j—1,4[: Z[a;]1(t) = 1.

Forn =0wesetw =e.

» Example: word w describes Z on [0, 4].

B(F)={XAYAZ XAYA-Z, XAN-YANZ XA-YA-Z,

SXAYAZ —SXAYAN-Z ~XA-YAZ -XA-YA-Z}

(
(
(X AY A=Z)
(

Lemma 3.4

w= (=X A=Y A-Z)
X A=Y A-Z)

Lemma 3.4. For all RDC formulae F, discrete interpretations Z, n > 0,
and all words w € ¥(F)* which describe Z on [0, 7],

Z,[0.n] = Fifandonly if w € L(F).

Proof: By structural induction.
o Base case: F = [P]:

o letw=ay,..., a,,n > 0, describe Z on [0, n].

o Z,[0,n] = [P]
Z,[0,n] = [Plandn > 1
n>landV1l<j<neZ[j—1,j]F[P]
n>land¥1<j<neZ[j—1jF(PA ?;YS_.: € DNF(P)
n>1andV1<j<nea; € DNF(P)

111101

w € DNF(P)* < we L(F)

-

Construction of the Language L(F') of Formula F'

« Note: Each state assertion P can be transformed
into an equivalent disjunctive normal form \/\"| a; with a; € S(F).

P=Kant
o Set DNF(P) := {ay,...,an} (C S(F)). & xamra MES\Q
Xaa¥aa2
o Define £(F) inductively: — mﬂ‘wmmﬂmfﬁw

L([P)) = DVF (P)*

LR) =D EF A\ )
LIV ) =(F) L &(T)
L(Fy: Fy) = ¥(F) (7, )

X AY AZ) € S(F)*

29738 307

Lemma 3.4 Cont’d

Lemma 3.4. For all RDC formulae F, discrete interpretations Z, n. > 0,
and all words w € (F)* which describe Z on [0, 7],

Z.[0.n] = Fifand only if w € L(F).

Proof: By structural induction.
o Induction steps: F = —F}:
o Letw=ay,
o Z,[0,n] = ~Fy
< notZ,[0,n] = A
= w¢ L(F)

Lan,n > 0,describe Z on [0, 7).

= we L(F)
0 —F
= we mm\ﬂ_@ru “
e FyV Fy, Fy; Forsimil
31 32



Sketch: Proof of Theorem 3.9

Theorem 3.9.
The realisal

ity problem for RDC with discrete time is decidable.

e kern(L) contains all words of L whose prefixes are again in L.

o If Lis regular, then kern(L) is also regular.
o kern(L(F)) can effectively be constructed.

* We have

Lemma 3.8. For all RDC formulae F, F is realisable from O in discrete
time if and only if kern(L(F)) is infinite.

« Infinity of regular languages is decidable.

Tell Them What You’ve Told Them.

» Asound calculus for DC exists,
a complete calculus does not exist.

Knowing the (sound) proof rules may also be useful
when conducting correctness proofs manually.

— see the textbook for the details

is interesting.

Adeci

For Restricted DC in discrete time,

ability is decidable.

o Proof idea: reduce to regular languages.

ability of DC formulae

n procedure could analyse, e.g., whether

3673

Decidability Results for Realisability: Overview

Fragment Discrete Time Continous Time
RDC decidable v/ decidable
RDC+ (=7 decidable forr € N undecidable for r € R*
RDC+ [P, =[P, undecidable undecidable
RDC+/ =z VY undecidable
DC —_r—

References
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Content

© A Calculus for DC: A brief outlook
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= DC Calculus s just the same, just a few more rules
o —» cf. textbook Olderog/Dierks
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