
Prof. Dr. Andreas Podelski
Tanja Schindler

Hand in until January 9th, 2019
15:59 via the post boxes

Discussion: January 14th/15th, 2019

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 9

The purpose of this exercise sheet is to familiarize you with algorithms for invariant checking.

Exercise 1: Invariant checking I
In the lecture, you have seen an algorithm for invariant checking by forward depth-first
search. We display this algorithm below.

Algorithm 1: DFS-based invariant checking

input : a finite transition system TS and a propositional formula Φ
output: “yes” if TS |= “always Φ”, otherwise “no” and a counterexample
R := ∅; // set of states (‘‘Reachable’’)

U := ε; // stack of states (‘‘Unfinished’’)

forall s ∈ I do
if DFS(s,Φ) then

return(“no”, reverse(U)); // path from s to error state

end

end
return(“yes”); // TS |= ‘‘always Φ’’

function DFS(s,Φ)
push(s, U);
if s /∈ R then

R := R ∪ {s}; // mark s as reachable

if s 6|= Φ then
return(“true”); // s is an error state

else
forall s′ ∈ Post(s) do

if DFS(s′,Φ) then
return(“true”); // s′ lies on a path to an error state

end

end

end

end
pop(U);
return(“false”);

end

1



Apply this algorithm to the following transition system whose set of atomic propositions
is AP = {a, b}. The invariant Φ to be checked is the propositional logical formula a.
Whenever you iterate over a set of states, always take state si before state sj if i is smaller
than j.
Present the execution of the algorithm by writing down the contents of the set R and the
stack U directly before every call to the function DFS.

s0 {a} s1 {a}

s2

{a, b}

s3

{a}

s4

{b}

Exercise 2: Invariant checking II
The “DFS-based invariant checking” algorithm presented above (and in the lecture) al-
ways computes a minimal counterexample (minimal in the sense that you cannot remove
the last state). However, the algorithm does not necessarily compute a counterexample of
minimal length (there might be two minimal counterexamples of different lengths). What
is an example that shows that the counterexample that is returned does not always have
minimal length?

For this purpose, provide the following.

� A transition system that has three states s0, s1, s2.

� An invariant.

� The (non-minimal) counterexample that is computed by the algorithm that uses
the following strategy for iterating over a set of states: always take state si before
state sj if i is smaller than j.

� A minimal counterexample.

Exercise 3: Invariant checking III
Give an algorithm (in pseudocode, analogously to the algorithm presented above or in the
lecture) for invariant checking such that, in case the invariant is refuted, a counterexample
of minimal length is provided as an error indication.
The algorithm should terminate for all finite transition systems.

Hint : You may modify the algorithm presented above (or in the lecture) appropriately.
You may also want to use two data structures: A queue and a map.
A queue is a list with two operations:

� void add(Element) adds a new element at the end.

� Element remove() removes the element at the front (FIFO principle).

2



A map behaves like a partial function. That is, it stores a value for a given key. It has
the following operations:

� void add(Key, Value) adds a new mapping from a key to a value.

� Value get(Key) returns the value for the given key.

� boolean has(Key) returns true iff the map stores a value for the given key.

You can use the map to store a predecessor state for a given state. This can be helpful
for constructing the counterexample in the end.

3


