
On the Construction of Automata from Linear

Arithmetic Constraints�

Pierre Wolper and Bernard Boigelot

Université de Liège, Institut Montefiore, B28
4000 Liège Sart-Tilman, Belgium

{pw,boigelot}@montefiore.ulg.ac.be

Abstract. This paper presents an overview of algorithms for construct-
ing automata from linear arithmetic constraints. It identifies one case in
which the special structure of the automata that are constructed allows a
linear-time determinization procedure to be used. Furthermore, it shows
through theoretical analysis and experiments that the special structure
of the constructed automata does, in quite a general way, render the
usual upper bounds on automata operations vastly overpessimistic.

1 Introduction

Model checking [CES86,QS81,VW86] is a now widespread technique for verifying
temporal properties of reactive programs. There are several ways to develop
the theory of model checking, a particularly attractive one being through the
construction of automata from temporal logic formulas [VW86,BVW94]. As a
result, there has been a fair amount of interest in the construction of automata
from temporal logical formulas, the history of which is actually fairly interesting.

The starting point is clearly the work of Büchi on the decidability of the
first and second-order monadic theories of one successor [Büc62]. These decid-
ability results were obtained through a translation to infinite-word automata,
for which Büchi had to prove a very nontrivial complementation lemma. The
translation is nonelementary, but this is the best that can be done. It is quite
obvious that linear-time temporal logic can be translated to the first-order the-
ory of one successor and hence to infinite-word automata. From a logician’s
point of view, this could be seen as settling the question, but an interest in
using temporal logic for computer science applications, in particular program
synthesis [MW84,EC82] triggered a second look at the problem. Indeed, it was
quite obvious that a nonelementary construction was not necessary to build an
automaton from a temporal logic formula; it could be done within a single ex-
ponential by a direct construction [WVS83,VW94]. As originally presented, this
construction was worst and best case exponential. Though it was fairly clear
that it could be modified to operate more effectively on many instances, nothing
� This research was partially funded by a grant of the “Communauté française de
Belgique - Direction de la recherche scientifique - Actions de recherche concertées”.

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 1–19, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 Pierre Wolper and Bernard Boigelot

was written about this, probably because the topic was thought to be rather
trivial and had no bearing on general complexity results.

Nevertheless, the idea that doing model checking through the construction of
automata was taken seriously, at least by some, and attempts were made to incor-
porate automata-theoretic model checking into tools, notably into
SPIN [Hol91,Hol97]. Of course, this required an effective implementation of
the logic to automaton translation algorithm and the pragmatics of doing this
are not entirely obvious. A description of such an implementation was given
in [GPVW95] and “improved” algorithms have been proposed since [DGV99].
Note that there are some questions about how to measure such “improvements”
since the worst-case complexity of the algorithms stays the same. Nevertheless,
experiments show that, for the temporal logic formulas most frequently used in
verification, the automata can be kept quite small. Thus, even though it is an
intrinsically exponential process, building an automaton from a temporal logic
formula appears to be perfectly feasible in practice. What is surprising is that
it took quite a long time for the details of a usable algorithmic solution to be
developed and codified.

Since building automata from temporal logic formulas turns out to be fea-
sible, one might wonder if the same approach could work for other logics. This
has been tried for the second-order monadic logic of one successor (S1S) in the
MONA tool [HJJ+95]. Here, one is confronted with nonelementary complexity,
but careful algorithm selection and coding as well as the fact that the prac-
tically useful formulas are not arbitrary make the tool unquestionably usable.
Motivated by the need to represent sets of integer vectors in the context of the
verification of infinite-state systems [BW94], an automata-based approach is be-
ing developed for linear integer (Presburger) arithmetic [WB95,Boi98]. The idea
that Presburger arithmetic formulas can be represented by automata goes back
at least to Büchi [Büc60], and has lead to nice characterization results for the
finite-state representable sets of integer vectors [Cob69,Sem77,BHMV94]. The
attractiveness of the approach is not so much for single-shot arithmetic decision
problems for which more traditional decision procedures perform well [Pug92],
but for situations in which represented sets are repeatedly manipulated and
compared, as is necessary in verification. Indeed, minimized deterministic finite
automata are a convenient normal form for arithmetic formulas, in a way similar
to BDDs [Bry92] being a normal form for Boolean formulas.

Nevertheless, attempts to make a pragmatic use of automata representing
arithmetic formulas are fairly recent [WB95,BC96] and one now needs to delve
into the details of the automata constructions. Indeed, a straightforward ap-
proach to building the automata is quite unworkable and a crude complexity
analysis leads only to a nonelementary upper bound, which is unsatisfactory
since Presburger arithmetic is know to be decidable in double exponential space.
Fortunately, one can do better. In [WB95] it was suggested to use concurrent
automata as a representation. This indeed reduces the size of the automata, but
pushes up the complexity of manipulating them. An important step was made
in [BC96] where it was showed that there is a simple construction for obtain-

On the Construction of Automata from Linear Arithmetic Constraints 3

ing a deterministic automaton corresponding to an equation or an inequation.
That paper even goes further and claims that a triple exponential determinis-
tic automaton can be built for an arbitrary Presburger formula. Unfortunately,
though the result itself might not be false, the argument used to substantiate
this claim is intrinsically incorrect as we will discuss in this paper. In [TRS98] an
encouraging experiment with an automaton-based Presburger implementation is
described. Finally, the LASH tool [LASH] is a comprehensive implementation of
arithmetic through automata.

This paper aims at presenting and improving on the basics of the pragmatics
of constructing automata from Presburger formulas. It starts with a detailed
exposition of the construction of automata for linear equations and inequations.
The fundamental idea of the construction is that of [BC96], which we extend and
improve. First, we deal with signed integers using 2’s complement notation (see
also [BBR97,BRW98]). Second, we aim at obtaining automata for both direc-
tions of reading number encodings. For equations, this is not problematic since
the constructed automaton is immediately deterministic in both directions. For
inequations, the construction of [BC96] gives an automaton that is deterministic
in one direction, but nondeterministic in the other. However, we show that the
automaton, taken in its nondeterministic direction, has a special structure that
allows the use of a linear-time determinization procedure of possibly indepen-
dent interest. Furthermore, this result shows that at least in this special case,
the general exponential upper bound on determinization is vastly pessimistic.

Finally, we turn to the problem of building automata for arbitrary Presburger
formulas. Here, the interesting question is whether an unbounded alternation of
quantifiers leads or not to a nonelementary blowup in the size of the automaton.
This of course can be the case for arbitrary automata, but we show, with the
help of a logic-based argument, that it is not the case for the automata obtained
from Presburger formulas. We further substantiate this by giving the results of
a number of experiments done with the LASH tool.

2 Preliminaries

Presburger arithmetic is the first-order theory of the structure 〈N, 0,≤,+〉, i.e.
the natural numbers with the ≤ predicate as well as the 0-ary function 0 and the
binary function +, all interpreted in the standard way. A Presburger formula
with free variables thus represents a set of natural number vectors. In what
follows, we will also refer to the theory of the related structure 〈Z, 0,≤,+〉, i.e.
the additive theory of the integers, as Presburger arithmetic. Context will remove
any ambiguity.

When encoded in a base r ≥ 2, a natural number is a word over the alphabet
{0, . . . r−1}. A language or set of words thus represents a set of natural numbers.
An obvious question to ask then is which sets of natural numbers correspond to
the regular languages under this representation. The question was answered by
Cobham who showed that the sets representable in at least two relatively prime
bases are exactly those definable in Presburger arithmetic [Cob69]. If one limits

4 Pierre Wolper and Bernard Boigelot

oneself to a specific base, say base 2, slightly more is representable. Precisely, one
can add to Presburger arithmetic the function Vr(n) giving the largest power of
the base r dividing its argument n (see [BHMV94]).

Similar results exist for vectors of natural numbers. To encode an n-dimen-
sional vector x = (x1, . . . , xn), one encodes each of its components in base r.
The length of the encoding of the components is then made uniform by adding
leading 0s to the shorter components. The result is then viewed as a word over the
alphabet rn by considering together the first digits of all the vector components,
then the second digits, and so on.

Example 1. The vector (4, 3) is encoded in binary by (100, 011), which is viewed
as the word (1, 0)(0, 1)(0, 1) over the alphabet 22.

Cobham’s result on the sets representable by regular languages was extended to
natural number vectors by Semenov [Sem77].

In many situations, it is useful to deal with integers rather than with natural
numbers. There are several ways to extend the encoding we just introduced
to integers. An obvious one is to add a sign bit, but this leads to the need to
constantly distinguish the cases of positive and negative numbers. If one works in
base 2, which will be our choice from now on, things can be made more uniform,
exactly as is done in computer arithmetic, by using 2’s complement notation as
proposed in [WB95,BRW98,Boi98].

In this notation, a number bkbk−1 . . . b1b0 of length k+1 written in base 2 is
interpreted as −bk2k+

∑
0≤i≤k−1 bi2i. It is thus positive if bk is 0 and negative if

this bit is 1. There is one slight difficulty that comes from the fact that there is no
bound on the size of the integers we consider and that thus we are dealing with
variable-length encodings of integers, as opposed to the fixed length usually used
in computer arithmetic. This is not problematic if we require that the leading bit
of a number is always a sign bit, i.e. it is 0 is the number is positive and 1 if the
number is negative1. Indeed, there is then no ambiguity on the interpretation of
the first bit of a number and repeating the sign bit, whether it is 0 or 1, has no
incidence on the value of the number interpreted according to 2’s complement’s
rule since −2k +2k−1 = −2k−1. We can thus still easily make the lengths of the
encodings of the components of a vector equal.

Example 2. The vector (−2, 12) can be encoded as (11110, 01100) or as the word
(1, 0)(1, 1)(1, 1)(1, 0)(0, 0).

Our goal here is to use finite automata to represent Presburger definable sets
of integers. The advantages of this representation are that it is easy to com-
pute with and that it makes questions about the represented sets, for instance
nonemptiness, easy to decide. Furthermore, by using minimal deterministic au-
tomata, one even obtains a convenient normal form for Presburger definable sets
of integer vectors. We will thus consider the problem of building automata cor-
responding to Presburger formulas. There are however two questions we have to
deal with before doing so.
1 More formally, this means that to represent an integer x, we use a number of bits

k > 0 large enough to satisfy −2k−1 ≤ x < 2k−1.

On the Construction of Automata from Linear Arithmetic Constraints 5

Since sign bits can be repeated any number of times, an integer vector has an
infinite number of representations. The question then is, which representations
should the automata accept. It turns out that the most convenient answer is all
valid representations, a representation of a vector being valid if its length is suf-
ficient to allow its largest magnitude component to start with a sign bit. Indeed,
representing an integer vector by all its encodings allows the Boolean operations
on sets of vectors to correspond exactly with the matching language operation
on the encodings. The same is unfortunately not true of projection, which is
the automaton operation that allows us to handle existential quantification. In-
deed, if for example one projects out the largest component of a vector by using
language projection on the encodings, one can be left with an automaton that
accepts only encodings beyond an unnecessarily long minimum inherited from
the component that was eliminated. This problem can nevertheless be solved by
using a specific projection operation that allows skipping the repetition of the
initial symbol of a word.

The second question is whether our automata will read encodings starting
with the most significant or with the least significant bit. One can see advantages
to using either directions, and the constructions we give allow automata to be
built for either direction. However, our default choice, and the one we will use in
examples, is to start with the most significant bit, this order often making the
search for a vector accepted by an automaton more effective.

3 Building Automata for Presburger Formulas

We now turn to the problem of building an automaton accepting all encod-
ings of the elements of a set defined by a Presburger formula. We could begin
with a construction of automata for addition, equality and inequality, but there
are interesting constructions that can deal directly with linear equations and
inequations. We thus start with these.

3.1 Building Automata for Equations

The construction we present here is in essentially the one given in [BC96]
adapted to handle negative numbers represented using 2’s complement, as well
as to reading numbers starting with the most significant bit first. The construc-
tion is based on the following simple observation. Consider a representation of
a vector x = (x1, . . . , xn) that is k bits long, and imagine adding the bits2

(b1, . . . , bn) = b respectively to the encodings of (x1, . . . , xn). The value x′ of
the (k + 1)-bit long encoding thus obtained is given by x′ = 2x+ b where addi-
tion is component-wise. This rule holds for every bit-tuple added except for the
2 Note that since there is a unique integer vector corresponding to an encoding, we
will quite liberally talk about the vector defined by an encoding and, when appro-
priate use vector notation for encodings. In particular, we will always write elements
(b1, . . . , bn) of 2

n as bit vectors b.

6 Pierre Wolper and Bernard Boigelot

first one, in which 1s have to be interpreted as −1. Thus, the value of a one bit
long vector (b1, . . . , bn) = b is simply −b.

Given this, it is very simple to construct an automaton for a linear equa-
tion a1x1 + · · · + anxn = c which we write a.x = c. Indeed, the idea is to keep
track of the value of the left-hand side of the equation as successive bits are
read. Thus, except for a special initial state, each state of the automaton cor-
responds to an integer that represents the current value of the left-hand side.
From a state corresponding to an integer γ = a.x for the vector x that has been
read so far, there is a single transition for each bit vector b leading to the state
γ′ = a.(2x+b) = 2a.x+a.b = 2γ+a.b. From the special initial state, the tran-
sition labeled b simply leads to the state a.(−b). The only accepting state is the
one whose value is c. Formally, the automaton corresponding to an n-variable
equation a.x = c is A = (S, 2n, δ, si, c) where

– S = Z ∪ {si}, i.e. the states are the integers plus a special state si;
– the alphabet 2n is the set of n-bit vectors;
– the transition function δ is defined by

• δ(si,b) = −a.b and
• δ(γ,b) = 2γ + a.b, for γ �= si;

– the initial state is the special state si;
– the only accepting state is c, the value of the right-hand side of the equation.

As defined, the automaton is infinite, but there are only a finite number of states
from which the accepting state is reachable. Indeed, if ‖a‖1 represents the norm
of a vector a = (a1, . . . , an) defined by ‖a‖1 =

∑n
i=1 |ai|, we have that from any

state γ such that |γ| > ‖a‖1, any transition leads to a state γ′ with |γ′| > |γ|.
So, if furthermore |γ| > |c|, c can never be reached from such a state. Hence,
all states γ such that |γ| > ‖a‖1 and |γ| > |c| can be collapsed into a single
nonaccepting state.

Example 3. The automaton for the equation x−y = 2 is given in Figure 2. Note
that, according to the criterion we have just given, the states beyond the solid
line cannot be reached from the accepting state and thus can be collapsed into a
single nonaccepting state. Furthermore, looking more carefully at this particular
automaton, one sees that the states to be collapsed can in fact include those
beyond the dotted line.

The rule we have given for identifying unnecessary states is only approxima-
tive. It can be refined, but a more effective approach of identifying the necessary
states is actually to construct the automaton backwards, starting from the ac-
cepting state. If this construction is limited to reachable states, only necessary
states will be constructed. The exact construction is given in Figure 2.

When limited to its reachable states, the automaton obtained by this con-
struction is exactly the useful part of the automaton given by the forward con-
struction. One can complete it by directing all missing transitions to a single
nonaccepting sink state. It is deterministic since it is a part of the forward au-
tomaton we constructed initially and furthermore, it is minimal, since the sets

On the Construction of Automata from Linear Arithmetic Constraints 7

−2
−1

1

2

−7

−6

−5

−4

4

5

6

7

3

−3

0

00, 11

10

10

10

01

01

00, 11

01

01

00, 11

01

01

00, 11
00, 11

00, 11
00, 11

00, 11

10

10

01

10

10

10

01

Fig. 1. The automaton for x − y = 2.

1. Create a table H of automata states and a list L of “active” states. Both are
initialized to {c}.

2. Repeat the following step until L = ∅.
3. Remove a state γ from L, and for every b ∈ 2n:

– If γo = (γ − a.b)/2 is an integer, then
• If γo is not in H , add it to H and L;
• Add a transition labeled b from γo to γ;

– If γ = −a.b, then
• Add a transition labeled by b from the initial state si to γ.

Fig. 2. The automaton construction algorithm for an equation.

8 Pierre Wolper and Bernard Boigelot

of words accepted from two distinct states cannot be identical. Indeed, the au-
tomaton is also deterministic when going backwards, except for transitions from
the initial state, which is not a problem since the language accepted from the
initial state is never equal to the one accepted from any other state. How many
states does the automaton have? Clearly, any state (except for the initial one) is
obtained from c by repeatedly applying the transformation T (γ) = (γ − a.b)/2.
The states obtained by applying this transformation i times, i.e. those in T i(c)
are in the range

 c

2i
±

i∑
j=1

‖a‖1

2j

which is always included in [c

2i
± ‖a‖1

]
. (1)

Equation (1), implies that for i > log2 c, the range reduces to [−‖a‖1, ‖a‖1].
Thus the states can be found in at most log2 c + 1 ranges each of size bounded
by 2‖a‖1 + 1. The total number of constructed states is thus O(log2 c × ‖a‖1),
which is only logarithmic in the value of the additive constant c and hence linear
in its number of bits.

3.2 Building Automata for Inequations

Consider now an inequation a.x ≤ c. Note that since we are dealing with integers,
a strict inequation a.x < c is equivalent to the nonstrict inequation a.x ≤ c− 1.
The forward construction we gave in the previous section can still be used to
build an automaton for the inequation, the only difference being that now the
set of accepting states is the set F = {γ | γ ≤ c}. Again, the automaton can be
limited to a finite number of states. Indeed, starting with a positive γ such that
γ > ‖a‖1, all transitions will lead to a γ′ > γ and hence if γ > c, the inequation
will never be satisfied. Similarly, if γ is negative and −γ > ‖a‖1, all transitions
will always lead to a γ′ < γ and thus if γ ≤ c, the inequation is satisfied.

Again, the analysis above is somewhat coarse and a backwards construction
can yield an automaton with less states. However, we have to take into account
the fact that we are dealing with an inequation and not an equation, which leads
us to construct an automaton somewhat different from the forward automaton.
The main point is that, when computing the transitions leading to a state γ, we
can no longer dismiss transitions for which γo = (γ − a.b)/2 is not an integer.
Indeed, interpreting the fact that a state γ is reached to mean that the inequation
a.x ≤ γ is satisfied by the word x read so far, the condition that has to be satisfied
in a state γo from which γ is reached by a b transition is γo ≤ (γ − a.b)/2. An
infinite number of states satisfy this condition, but it is sufficient to keep the
largest since it corresponds to the weakest condition. Thus, as origin of a b
transition to a state γ, we choose γo = �(γ − a.b)/2�. Finally, we have to add
the possibility of transitions originating in the initial state. Thus, if −a.b ≤ γ,
we also add a b transition from the initial state to γ.

On the Construction of Automata from Linear Arithmetic Constraints 9

The exact construction of the automaton is given in Figure 3, the initial state
being si and the accepting state being c.

1. Create a table H of automata states and a list L of “active” states. Both are
initialized to {c};

2. Repeat the following step until L = ∅ :
3. Remove a state γ from L, and for every b ∈ 2n:

– Let γo = �(γ − a.b)/2	, then
• If γo is not in H , add it to H and L;
• Add a transition labeled b from γo to γ;

– If −a.b ≤ γ, then
• Add a transition labeled by b from the initial state si to γ.

Fig. 3. The automaton construction algorithm for an inequation

As opposed to the case of equations, the automaton we have just built is
quite different from our initial forward automaton and is no longer determinis-
tic. Indeed, clearly transitions from the initial state are not deterministic and,
furthermore, �(γ − a.b)/2� can be the same for two different values of γ, just
think of γ = 2 and γ = 3 with b = 0. The bound on the number of states we
derived for the case equations still holds, but for a nondeterministic automaton.
If a deterministic automaton is desired, one is now faced with a potentially ex-
ponential determinization cost. However, it would be quite surprising that the
automaton for an inequation be so much bigger than the automaton for the cor-
responding equation. We show that this is not case since the automaton we have
constructed has a special structure that allows it to be determinized without
increasing its number of states.

The intuition behind the efficient determinization procedure is the following.
Suppose that from a state γ, one has two b transitions leading respectively to
states γ1 and γ2. One obviously has either γ1 < γ2 or γ2 < γ1 and one can assume
without loss of generality that the former holds. If one reads being in a state γ
as meaning that the inequation a.x ≤ γ is satisfied by what has been read so far,
it is immediate that any x that satisfies a.x ≤ γ1 also satisfies a.x ≤ γ2. Hence
only the stronger of the two conditions, i.e. a.x ≤ γ1 needs to be remembered
in order to know if the word being read will end up being accepted, and the
transition to the state γ2 can be dropped. We now formalize this intuition.

Definition 1. Given a nondeterministic finite automaton A = (S, Σ, δ, s0, F),
let As be the automaton A = (S, Σ, δ, s, F), i.e. A where the initial state is s.
The automaton A is then said to be ordered if there is an explicitly given, i.e.
constant-time decidable, strict total order ≺ on its set S (possibly excluding the
initial state if no transitions lead to it) of states and if for any pair of states
satisfying s1 ≺ s2, we have that L(As1) ⊂ L(As2).

Ordered automata can be determinized efficiently.

10 Pierre Wolper and Bernard Boigelot

Lemma 1. A nondeterministic ordered finite automaton can be determinized in
linear time.

Proof. Let A = (S, Σ, δ, s0, F) be an ordered nondeterministic finite automaton,
i.e its transition function is of the type δ : S × Σ → 2S . The corresponding
deterministic automaton is A′ = (S, Σ, δ′, s0, F), all components of which are
identical to those of A, except for δ′ : S × Σ → S which is defined by

δ′(a, s) = max(δ(a, s)).

Thus, if several identically labeled transitions leave a state, they are replaced
by a single transition to the largest of these states in the order defined on S.
According to the definition of ordered automata, the language accepted from
this largest state includes the language accepted from all smaller states and
hence removing the transitions to smaller states does not change the language
accepted by the automaton. Also note that if the initial state is not the target
of any transition, it can safely be left out of the order. The determinization
procedure just amounts to removing transitions and can be easily implemented
in linear time. ��

We are aiming at applying Lemma 1 to the nondeterministic automata we
have constructed for inequations. So we need to check if these automata are
ordered. Let us look at the words accepted from a state γ of the automaton A
constructed for an inequation a.x ≤ c. These, will all be words w encoding
a vector xw, which suffixed to any word w0 encoding a vector xw0 satisfying
a.xw0 ≤ γ form a word w0w encoding a vector xw0w that satisfies a.xw0w ≤ c.
Thus all the words w accepted from a state γ are such that for all w0 satisfying
a.xw0 ≤ γ one has

a.xw0w = a.xw02
length(w) + a.xw ≤ c

and hence, since the above holds for any w0 such that a.xw0 ≤ γ, w must satisfy

γ2length(w) + a.xw ≤ c. (2)

So, one expects that, if γ1 < γ2, a word w accepted from γ2 will also be ac-
cepted from γ1. In other words, one expects that L(Aγ2) ⊂ L(Aγ1) and that the
automaton is ordered with respect to the relation ≺ which is the inverse of the
numerical order. However, this is not quite so. Indeed, even though all words
accepted from a state γ satisfy the relation expressed by Equation (2), it is not
the case that all words satisfying Equation (2) are accepted. Fortunately, it is
possible to “complete” the automaton we have constructed in such a way that
the words accepted from a state γ are exactly those defined by Equation (2),
and this can be done without adding states to the automaton.

The completion procedure just adds transitions and accepting states. Given
the automaton A = (S, 2n, δ, si, c) constructed by the algorithm of Figure 3 for
an inequation a.x ≤ c, it constructs an automaton A′ = (S, 2n, δ′, si, F

′) as
described in Figure 4.

On the Construction of Automata from Linear Arithmetic Constraints 11

1. The set of accepting states is F ′ = {γ ∈ S | γ ≤ c};
2. For every state γ, and bit vector b ∈ 2n, δ′(γ,b) = δ(γ,b) ∪ {γ′ ∈ S | γ′ ≥

2γ + a.b}.

Fig. 4. The completion algorithm.

The completion algorithm can add a number of transitions that is quadratic
in the number of states and hence can require quadratic time. We will see how
this can be improved, but first let us prove that the completion algorithm does
produce an ordered automaton.

Lemma 2. The completion algorithm of Figure 4 produces an ordered automa-
ton that accepts the same language as the original automaton.

Proof. The order with respect to which the completed automaton is ordered is
the inverse of the numerical order. We thus have to prove that if γ1 < γ2 then
L(Aγ2) ⊂ L(Aγ1). This is done by showing that the set of words accepted from
any state γ is exactly the one satisfying the relation given in Equation (2), which
at the same time shows that the language accepted by the completed automaton
is unchanged since the original automaton already accepted all solutions of the
inequation.

To show that any word satisfying Equation (2) in a state γ is accepted from
that state, we proceed by induction on the length of words. For the induction
to go through, we strengthen the property we are proving with the fact that
for any word w of length k, the state γmax

w which is the largest γ such that
γ2k + a.xw ≤ c is in S. If the word is of length 0 (the empty word ε), it must be
accepted iff γ ≤ c. This is guaranteed by the definition of the set of accepting
states F ′. Furthermore, γmax

ε is simply c, which by construction is in S.
For the inductive step, let w = b1w1, where w1 is of length k−1. By inductive

hypothesis, the state γmax
w1

is in S. By construction, the state �(γmax
w1

− a.b1)/2�
is in S and is the state γmax

w . Since w satisfies the relation of Equation (2) in γ,
one must have that γ ≤ γmax

w . Hence, the completion procedure adds from γ a
transition to γmax

w1
given that

γmax
w1

≥ 2γmax
w + a.b1 ≥ 2γ + a.b1.

Hence w is accepted from γ. ��
Note that the completion procedure adds transitions that will later be re-

moved by the determinization procedure for the ordered automaton that is ob-
tained. In fact from a state γ and for a bit vector b, the determinization proce-
dure only keeps the transition to the smallest γ′ such that γ′ ≥ γ + a.b. Hence,
in our completion procedure, we can add transitions according to the following
rule:

1. For every state γ, and bit vector b ∈ 2n, δ′(γ,b) = δ(γ,b) ∪min{γ′ ∈ S |
γ′ ≥ 2γ + a.b}.

12 Pierre Wolper and Bernard Boigelot

This can be done in linear time and we have the following result.

Theorem 1. The automaton constructed for an inequation by the algorithm of
Figure 3 can be determinized in linear time.

Example 4. The automaton produced by Algorithm 3 for the inequation
x− y ≤ 2 is given in Figure 5, with the elements added by the simplified com-
pletion procedure in boldface, and the transitions deleted by the determinization
procedure underlined.

−1

1

2

0

01

10

00, 01, 10, 11

10

10 01

00, 10, 11

00, 01,

00, 01, 11

00, 01, 11

00, 10, 11

10, 11

00, 01, 10, 11

Fig. 5. The automaton for x − y ≤ 2.

3.3 Building Automata for Arbitrary Formulas

In an arbitrary Presburger formula, one can always move negations inwards and
quantifications outwards. Doing so, one obtains a Boolean combination of linear
(in)equations prefixed by a string of quantifiers, i.e. a formula of the form

Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn, y1, . . . , ym) (3)

where each Qi is either ∀ or ∃, φ is quantifier free and y1, . . . ym are the free
variables of the formula. The quantifier-free formula φ is a Boolean combination
of linear equations and inequations φi. For each of the φi, we have seen how

On the Construction of Automata from Linear Arithmetic Constraints 13

to build a deterministic automaton of size O(2c|φi|), where |φi| is the number
of symbols needed to represent the (in)equation, coefficients being encoded in
a base ≥ 2. The Boolean combination of these (in)equations can thus be repre-
sented by a deterministic automaton that is the product of the automata for the
(in)equations, the accepting states being defined according to the given Boolean
combination. This product is of size O(

∏
i 2

c|φi|) or O(2c
∑

i
|φi|), which is equal

to O(2c|φ|). The size of this deterministic automaton is thus at most a single
exponential in the size of the formula.

To handle quantification, one replaces ∀ by ¬∃¬, and uses projection as
the automaton operation corresponding to existential quantification. There is
however one slight problem in doing so, which is that the automaton obtained
by standard projection does not accept all encodings of the projected set of
integer vectors.

Example 5. The automaton for x = 1∧ y = 4 and the result of projecting out y
from this automaton are given in Figure 6. The resulting automaton accepts the
encodings of 1, but only those that are of length at least 4. The encodings 01
and 001 are not accepted.

00

0

00

0

01

0

00

0 1

10

Fig. 6. Automata for x = 1 ∧ y = 4 and its projection.

The problem illustrated in Example 5 can be solved by modifying the automa-
ton obtained from projection to ensure that when a word in b+w is accepted the
word bw is also accepted. This is done by including in the set of states reachable
from the initial state by b all states reachable from the initial state by b+.

The automaton obtained after a projection step is in general nondeterministic
and one needs to determinize it in order to apply the complementation needed
to handle universal quantification. One thus expects a exponential blowup in
the size of the automaton for each quantifier alternation and thus an automaton
whose size grows in a nonelementary way. In [BC96] it is argued that this is
not the case, and that the size of the automaton is at most 3 exponentials in
the size of the formula. Unfortunately, the argument used is false. Indeed, it es-
sentially amounts to translating the string of alternating quantifiers to Boolean

14 Pierre Wolper and Bernard Boigelot

transitions, generalizing the translation to nondeterministic transitions done in
the handling of projection. The result is thus an alternating automaton of size
O(2c|φ|), which can be converted into a deterministic automaton two exponen-
tials larger. The catch is that this implies that the quantifier prefix is handled
bit-wise rather than number-wise. Explicitly, when moving from numbers to bi-
nary encodings, this implies that rather than translating (3) to

Q1b11b12 . . . b1kQ2b21b22 . . . b2k . . . Qnbn1bn2 . . . bnkφ,

one translates it to

Q1b11Q2b21 . . . Qnbn1Q1b12Q2b22 . . . Qnbn2 . . . Q1b1kQ2b2k . . .Qnbnkφ,

which has, of course, an entirely different meaning.
That the argument used in [BC96] is false does not mean that the size of

the automaton for a Presburger formula will grow nonelementarily with respect
to the number of quantifier alternations. Indeed, an analysis of the traditional
quantifier elimination procedure for Presburger arithmetic [End72] shows the op-
posite. Looking at this procedure, one notices that the number of basic formulas
that are generated stays elementary in the size of the initial formula. Whatever
the quantifier prefix of the formula, the quantifier elimination procedure only
generates a Boolean combination of this elementary number of formulas. Hence,
the formula obtained by the quantifier elimination procedure is elementary and
so will be the corresponding automaton.

3.4 Pragmatics

So far, we have tried to present in a fairly detailed way the algorithms used to
build automata from Presburger formulas. However, there are still a a substantial
number of “improvements” that can be added to what we have described in
order to obtain a good implemented system. We discuss here one such important
improvement. The reader is certainly aware of the fact that one of the drawbacks
of the automata we are constructing is that their alphabet is exponential in the
number of variables of the arithmetic formula. Thus, even very simple formulas
involving many variables will lead to automata with a huge number of transitions.
Fortunately, there is a way around this.

The idea is to sequentialize the reading of the bits of the vector components.
That is, rather than reading a bit vector b = (b1, b2, . . . , bn) as a single entity,
one reads b1, b2, . . . , bn one at a time in a fixed order. The size of the alphabet
is now always 2, whatever the number of components of the integer vectors de-
fined. Of course, the counterpart is that the number of states of the automaton
is increased, but this increase can be more moderate than the explosion in the
number of transitions that comes from a large number of variables. This can
easily be understood by observing that using 2n as alphabet amounts to repre-
senting the transitions from a state as a truth table, whereas sequentializing the
reading of the bits corresponds to representing the transitions from a state as a
decision diagram for a given bit order. Minimizing the automaton has the effect

On the Construction of Automata from Linear Arithmetic Constraints 15

of minimizing this diagram and one is in fact representing the transitions from
a state with a structure that is similar to an OBDD [Bry92]. This technique is
used in the LASH package [LASH] as well as in the MONA tool [HJJ+95]. The
construction algorithms presented in this paper can easily be adapted to the
sequentialized encoding of vectors.

4 Experimental Results

As discussed above, each application of a projection and determinization con-
struction to an automaton representing arithmetic constraints is not going to
yield an exponential blowup in the size of the automaton. The question then is,
what blowup does in fact occur? To attempt to answer this question, we turned
to experiments performed with the help of the LASH tool.

The first experiment consists of applying an existential quantifier to the sets
of solutions of random systems of linear inequalities. The results obtained for
100 systems of 8 inequations of dimension 4 with coefficients in the interval
[−5, . . . , 5] are given in Figure 7. This figure depicts the number of states of the
quantified automata, which are made deterministic and minimal, with respect
to the size of the unquantified automata. Note that all the points fall below the
dotted equality line, which means that the number of states always decreases.

10

100

1000

10000

100000

10 100 1000 10000 100000 1e+06

Fig. 7. Effect of quantification over systems of linear inequalities.

A second test consists of repeatedly applying an existential quantification
to the automata of the previous experiment, until only a single free variable
remains. Figure 8 gives the number of states of the automata obtained during,
and as a result of, this process, relative to the size of the automaton obtained
prior to the application of the last quantification operation.

16 Pierre Wolper and Bernard Boigelot

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06

Fig. 8. Effect of repeated quantification over systems of linear inequalities.

Finally, Figure 9 illustrates the effect of applying existential quantification to
non-convex sets obtained by joining together the sets of solutions of two random
systems of linear inequalities.

1

10

100

1000

10 100 1000 10000 100000

Fig. 9. Effect of quantification over non-convex sets.

It is rather surprising that these experiments show that every projection-
determinization step in fact decreases the size of the automaton, whereas an
exponential blowup could have been feared. This raises interesting questions,
for instance, what exact bound can be proved on the size increase resulting
from projecting and determinizing an arithmetic automaton? What structural
properties of such automata explain this bound? These are still open questions.

On the Construction of Automata from Linear Arithmetic Constraints 17

5 Conclusions

There are two sets of conclusions that can be drawn from this paper. The first
concerns the use of finite automata as a tool for handling Presburger arith-
metic. The initial construction of an automaton from a quantifier-free formula
can be exponentially expensive, either as the result of the interaction of many
constraints or as a consequence of the presence of large multiplicative constants
in formulas. It is easy to construct examples where this explosion occurs, but
also to construct examples where things are much tamer. There is however, an
important benefit linked to this potentially high cost: the automaton is a struc-
ture in which much of the information contained in the formula is explicit. For
instance, satisfiability becomes decidable in linear time and inclusion between
represented sets is, at worst, quadratic. Furthermore, as shown by our experi-
ments, subsequent manipulation of the automaton need not be very costly. This
indicates, that if one needs to repeatedly work with and transform a Presburger
formula, as is often the case in verification applications, adopting the automata-
based approach might very well be an excellent choice. On the other hand, if one
is interested in a one shot satisfiability check, traditional approaches have the
edge since building the automaton involves doing substantially more than just
checking for the possibility of satisfying the given formula. Of course, only the
accumulation of experiments coupled with the fine-tuning of tools will give the
final word on the value of the approach.

The second set of conclusions is about computing with automata and the
corresponding complexity bounds. Our special determinization procedure for
inequation automata as well as our discussion of projection-determinization op-
erations indicate that the general complexity bounds for automata operations
do not tell the full story when dealing with automata corresponding to linear
constraints. For inequation automata, we were able to identify the structure that
explained the absence of blowup while determinizing. For the determinization of
the result of a projection operation, our only arguments for the absence of blowup
comes from a logic-based analysis of the represented sets. It would, however, be
much more satisfactory to explain the absence of blowup in purely automata-
theoretic terms, which could lead to more direct and efficient algorithms, just as
in the case of inequation automata. But, this remains an open problem.

References

BBR97. B. Boigelot, L. Bronne, and S. Rassart. An improved reachability analy-
sis method for strongly linear hybrid systems. In Proc. 9th Int. Conf.on
Computer Aided Verification, volume 1254 of Lecture Notes in Computer
Science, pages 167–178, Haifa, June 1997. Springer-Verlag. 3

BC96. A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic
and finite automata. In Proceedings of CAAP’96, number 1059 in Lecture
Notes in Computer Science, pages 30–43. Springer-Verlag, 1996. 2, 3, 5,
13, 14

18 Pierre Wolper and Bernard Boigelot

BHMV94. V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-
recognizable sets of integers. Bulletin of the Belgian Mathematical Society,
1(2):191–238, March 1994. 2, 4

Boi98. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, Université de Liège, 1998. 2, 4

BRW98. Bernard Boigelot, Stéphane Rassart, and Pierre Wolper. On the expres-
siveness of real and integer arithmetic automata. In Proc. 25th Colloq. on
Automata, Programming, and Languages (ICALP), volume 1443 of Lecture
Notes in Computer Science, pages 152–163. Springer-Verlag, July 1998. 3,
4

Bry92. R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992. 2, 15

Büc60. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift
Math. Logik und Grundlagen der Mathematik, 6:66–92, 1960. 2

Büc62. J.R. Büchi. On a decision method in restricted second order arithmetic.
In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12,
Stanford, 1962. Stanford University Press. 1

BVW94. Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. In Computer Aided
Verification, Proc. 6th Int. Workshop, volume 818 of Lecture Notes in Com-
puter Science, pages 142–155, Stanford, California, June 1994. Springer-
Verlag. 1

BW94. Bernard Boigelot and Pierre Wolper. Symbolic verification with periodic
sets. In Computer Aided Verification, Proc. 6th Int. Conference, volume 818
of Lecture Notes in Computer Science, pages 55–67, Stanford, California,
June 1994. Springer-Verlag. 2

CES86. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, Jan-
uary 1986. 1

Cob69. A. Cobham. On the base-dependence of sets of numbers recognizable by
finite automata. Mathematical Systems Theory, 3:186–192, 1969. 2, 3

DGV99. M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata genera-
tion for linear temporal logic. In Computer-Aided Verification, Proc. 11th
Int. Conference, volume 1633, pages 249–260, July 1999. 2

EC82. E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize
synchronization skeletons. Science of Computer Programming, 2:241–266,
1982. 1

End72. H. B. Enderton. A mathematical introduction to logic. Academic Press,
1972. 14

GPVW95. Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Proc. 15th
Work. Protocol Specification, Testing, and Verification, Warsaw, June 1995.
North-Holland. 2

HJJ+95. Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund,
Robert Paige, Theis Rauhe, and Anders Sandholm. Mona: Monadic second-
order logic in practice. In Ed Brinksma, Rance Cleaveland, Kim Guldstrand
Larsen, Tiziana Margaria, and Bernhard Steffen, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 1019 of Lec-
ture Notes in Computer Science, pages 89–110. Springer-Verlag, 1995. 2,
15

On the Construction of Automata from Linear Arithmetic Constraints 19

Hol91. G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall
International Editions, 1991. 2

Hol97. Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997. Special Issue: Formal Methods
in Software Practice. 2

LASH. The Liège Automata-based Symbolic Handler (LASH). Available at
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/. 3, 15

MW84. Zohar Manna and Pierre Wolper. Synthesis of communicating processes
from temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 6(1):68–93, January 1984. 1

Pug92. W. Pugh. A practical algorithm for exact array dependency analysis.
Comm. of the ACM, 35(8):102, August 1992. 2

QS81. J.P. Queille and J. Sifakis. Specification and verification of concurrent
systems in Cesar. In Proc. 5th Int’l Symp. on Programming, volume 137,
pages 337–351. Springer-Verlag, Lecture Notes in Computer Science, 1981.
1

Sem77. A. L. Semenov. Presburgerness of predicates regular in two number systems.
Siberian Mathematical Journal, 18:289–299, 1977. 2, 4

TRS98. R. K. Ranjan T. R. Shiple, J. H. Kukula. A comparison of Presburger
engines for EFSM reachability. In Proc. 10th Int. Conf. on Computer Aided
Verification, volume 1427 of Lecture Notes in Computer Science, pages 280–
292, Vancouver, July 1998. Springer-Verlag. 3

VW86. Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In Proceedings of the First Symposium on
Logic in Computer Science, pages 322–331, Cambridge, June 1986. 1

VW94. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, November 1994. 1

WB95. Pierre Wolper and Bernard Boigelot. An automata-theoretic approach to
Presburger arithmetic constraints. In Proc. Static Analysis Symposium,
volume 983 of Lecture Notes in Computer Science, pages 21–32, Glasgow,
September 1995. Springer-Verlag. 2, 4

WVS83. Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths. In Proc. 24th IEEE Symposium on Foundations
of Computer Science, pages 185–194, Tucson, 1983. 1

	Introduction
	Preliminaries
	Building Automata for Presburger Formulas
	Building Automata for Equations
	Building Automata for Inequations
	Building Automata for Arbitrary Formulas
	Pragmatics

	Experimental Results
	Conclusions
	References

