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Abstract. We introduce a subclass of non deterministic finite automata (NFA)
that we call Residual Finite State Automata (RFSA): a RFSA is a NFA all the
states of which define residual languages of the language it recognizes. We prove
that for every regular languagk, there exists a unique RFSA that recognizes

L and which has both a minimal number of states and a maximal number of
transitions. Moreover, this canonical RFSA may be exponentially smaller than
the equivalent minimal DFA but it also may have the same number of states as
the equivalent minimal DFA, even if minimal equivalent NFA are exponentially
smaller. We provide an algorithm that computes the canonical RFSA equivalent
to a given NFA. We study the complexity of several decision and construction
problems linked to the class of RFSA: most of them are PSPACE-complete.

1 Introduction

Regular languages and finite automata have been extensively studied since the begin-
ning of formal language theory. Representation of regular languages by means of Deter-
ministic Finite Automata (DFA) has many nice properties: there exists a unique minimal
DFA that recognizes a given regular language (minimal in number of states and unique
up to an isomorphism); each stat®f a DFA A defines a language (composed of the
words which lead to a final state frogy which is a natural component of the language
L recognized by4, namely aresidual languagef L. One of the major drawbacks of
DFA is that they provide representations of regular languages whose size is far to be
optimal. For example, the regular languagé0X.’™ is represented here by a regular
expression whose size 3(log n) while its minimal DFA has abow™ states. Using
Non deterministic Finite Automata (NFA) rather than DFA can drastically improve the
size of the representation: the minimal NFA which recognizé8X™ hasn + 2 states.
However, NFA have none of the two above-mentioned properties: languages associated
with states have no natural interpretation and two minimal NFA can be not isomorphic.
In this paper, we study a subclass of non deterministic finite automata that we call
Residual Finite State Automata (RFSA). By definition, a RFSA is a NFA all the states
of which define residual languages of the language it recognizes. More precisely, a NFA
A = (X,Q,Qo, F, ) is a RFSA if for every state in @) there exists a worad such
thatuv is recognized by if and only if readingy, a final state can be reached frgm
Clearly, all DFA are RFSA but the converse is false.
We prove that among all the RFSA which recognize a given regular language, there
exists a unique element which has both a minimal number of states and a maximal
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number of transitions. This canonical RFSA may be exponentially smaller than the
equivalent minimal DFA (for example, the canonical RFSA which recognizeés.”
hasn + 2 states); but it may also have the same number of states as the equivalent mini-
mal DFA, even if minimal equivalent NFA are exponentially smaller. Another approach
of canonical NFA can be found in [Car70] and [ADN92].

It is well known that for a given DFA recognizing a languagg, if we first con-
struct the mirror automatoA and then, the deterministic automaton equivalentito
using the standard subset construction technique, we obtain the minimal DHA for
We prove a similar property for RFSA. This property provides an algorithm which
computes the canonical RFSA equivalent to a given NFA. Unfortunately, we also prove
that this construction problem is PSPACE-complete, as most of the constructions we
define in this paper.

In section2, we recall classical definitions and notations about regular languages
and automata. We define RFSA in secfibn 3 and we study their properties in §&ction 4.
In particular, we introduce the notion of canonical RFSA. We provide a construction
of the canonical RFSA from a given NFA in sectidn 5. In seckibn 6, we study some
particular (and pathological) RFSA. Sectidn 7 is devoted to the study of the complexity
of our constructions. Finally, we conclude by indicating where this work originates from
and by describing some of its applications in the field of grammatical inference.

2 Preliminaries

In this section, we recall some definitions concerning finite automata. For more infor-
mation, we invite the reader to consult [HU79,Yu97].

2.1 Automata and Languages

Fig. 2. A, Is the Minimal DFA Recognizing.*0.X..
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Fig. 3. A3 Is a RFSA Recognizing 0.

Let X' be afinite alphabet, and I1&t* be the set of words o&'. We note: the empty
string and|u| the length of a word. in X*. A language is a subset af*.

A non deterministic finite automatdiNFA) is a quintupled = (¥, Q, Qo, F, 0)
where( is a finite set of states)y C Q is the set of initial states” C @ is the set
of terminal states) is thetransition functiorof the automaton defined from a subset of
Q x X t029. We also note the extended transition function defined from a subset of
29 x X* t0 29 by:

o({q}e) = {a},

6({a}, ) = d(q,2),

5(Q',u) = U{6({q}, wlg € Q'}and

5({q}, uz) = 5(8(g,u), x)
whereQ’' C Q,z € X, q € Q andu € X*.

A NFA is deterministig DFA) if )y contains exactly one elemeptand ifvVq € Q,
Vo € X, Card(6(q,z)) < 1. ANFA s trimmedif Vg € Q, 3wy € X*, g € §(Qo, w1)
and3w, € X*, §(q, wo) N F # (). A stateq is reachableby the wordu if ¢ € §(Qo, u).

A word v € X* is recognized by a NFA if(Qo,u) N F # () and the language
L 4 recognized byA is the set of words recognized by We denote byRec(X*) the
class of recognizable languages. It can be proved that every recognizable language can
be recognized by a DFA. There exists a unique minimal DFA that recognizes a given
recognizable language (minimal with regard to the number of states and unique up to
an isomorphism). Finally, the Kleene theorem [KIe56] proves that the class of regular
languagefieg(X*) is identical toRec(X*).

The mirror of a wordu = z1...2, (z; € X) is defined byu = =z, ...x;.
The mirror of a languagé is L = {u|u € L}. The mirror of an automatod =
(X,Q,Q0, F,8)is A= (X,Q,F,Qo,d) whereqg € (¢, ) ifand only if ¢’ € (¢, x).
Itis clear thatL 4 = L.

Let L be a regular language. Lét= (X', Q, Qo, F, 0) be a NFA that recognizes
and letQ’ C Q. We noteL the language defined by, = {v|6(Q’,v) N F # 0}.
When@Q’ contains exactly one staigewe simply denotd.q by L,.

2.2 Residual Languages

Let L be a language over* and letu € X*. Theresiduallanguage ofL with re-
gard tou is defined byu='L = {v € X* | wv € L}. If L is recognized by a NFA
<2’ Q7 QOa Fa 6>1 thenq € 6(Q0a ’LL) = Lq - u 'L
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The Myhill-Nerode theoremn [Myh57,Nerb8] proves that the set of distinct residual
languages of any regular language is finite. Furthermoee A (X', Q, Qo, F, §) is the
minimal DFA recognizind., we have:

— for every non empty residual language' L, there exists a uniquge Q such that
L, = u 1L,
— Vq € Q, there exists a unique residual languagé L such that: 'L = L,,.

3 Definition of Residual Finite State Automaton

Definition 1. A Residual Finite State Automaton (RFSA)is a NFA (X, Q, Qo, F, 0)
such that, for each statg € @, L, is a residual language of 4. More formally,
Vge Q,Jue Y*suchthatl, =u"1L4.

Remark: Trimmed DFA have this property, and therefore are RFSA.

Definition 2. Let A = (X, Q, Qo, F,§) be a RFSA and lef be a state ofA. We say
thatw is acharacterizingvord forg if L, = u='L 4.

Example 1.We study here the regular languafe= X*0X whereX = {0, 1}. One
can prove that this language is recognized by the following automatal, and A3
(fig. @, 2,[3):

— A; is a NFA recognizind.. One can notice tha4; is neither a DFA, nor a RFSA.
Languages associated with statesbge = X*0X, L,, = X, L,, = {¢}. As for
everyu in X*, we haveuL C L and so,L C u~'L, we can see that neithé&s nor
L are residual languages.

— A, is the minimal DFA that recognizds This automaton is also a RFSA , we have
Ly = 205, Ly, = 05 + X, Ly, = Y05 + X +¢, Ly, = 2*0% + ¢, S0,

Ly =¢'L,Ly =0"'L, L,y =00"'L, L,, =01"'L.

— Aj is a RFSA recognizind.. Indeed, we havé,, = ¢ 'L, L, = 07'L, L,, =
017'L. One can notice that this automaton is not a DFA. This automaton is the
canonical RFSA of, which is one of the smallest RFSA (regarding the number of
states) recognizing (the notion of canonical RFSA will be described later).

Example 2.To look for a characterizing word for a stajas often equivalent to look
for a wordu, that only leads tq (i.e. such thad(Qo, u,) = {q}). Nevertheless, such a
word does not always exist. For example,let a*b* + b*a™.

b

Fig. 4. A RFSA Recognizing the Languagéb™ + b*a*.
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The automaton described in figlile 4 recognize¥ve haveL,, = b*a*, Ly, = a*,
Lg, = a*b*, L,, = b*. This automaton is a RFSA, ds,, = b'L, L,, = (ba)"'L,
Ly, = a 'L, L,, = (ab)”" L. But there exists no word such thath(Qo, u) = {gs}.

4 Properties of Residual Finite State Automata

4.1 General Properties

Definition 3. Let L be a regular language. We say that a residual languagéL is
primeif it is not equal to the union of residual languages it strictly contains:

w1 L is prime if
U{U*IL |v 'L Cu 'L} Cu L.
We say that a residual languagedemposedf it is not prime.

Notice that a prime residual language is not empty and that the set of distinct prime
residual languages of a regular language is finite.

Proposition 1. Let A = (X, Q, Qo, F, ) be a RFSA. For each prime residuat ' L 4,
there exists a state € Q such thatL, = u='L 4.

Proof: Let §(Qo,u) = {q,...,qs} and letvq,...,v, be words such that,, =
v; 1L 4 for everyl < i < s. We have

u_lLA: U ’UZILA.

i=110s

Asu~1L 4 is prime, there exists some such thaty 'Ly = v; 'L = L,,. O
As a corollary, a RFSA has at least as many states as the number of prime resid-
uals of L 4.

4.2 Saturation Operator

We define asaturationoperator that allows to add transitions to an automaton without
modifying the language it recognizes.

Definition 4. LetA = (¥, Q, Qo, F, 0) be a NFA. We cabaturatef A the automaton

S(A) = (2,Q,Qo, F.5) with Qo = {g € Q | L, € La} andd(q,z) = {¢' € Q |
xLy C L,}. We say that an automatohis saturated ifA = S(A).

Lemma 1. Let A and A’ be two NFA sharing the same set of stafpdf L, = L
and if for every statg € Q, L, = L;, (L, and L, being the languages corresponding
to ¢ in both automata), the§(A) = S(4").
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Proof: The statey is an initial state of5(A) if and only if L, C L 4, thatis if and only
if ¢ is an initial state of5(A’).

In the same wayy’ € 6(q,z) in S(A) ifand only if zL, C L, i.e. if and only if
q €6 (q,z)inS(A"). O

We noteL, = {u | d(g,u) N F # (}.

Proposition 2. Let A be a NFA and let(A) be its saturated. For each stageof A, we
havelL, = L,.

Proof: Clearly,L, C Eq as the saturated of an automaton is obtained by adding transi-
tions and initial states. To prove the converse inclusion, we prove by induction that for
every integer and every state

Ly,NX<"C L,

If n = 0, the property is true ad andS(A) have the same terminal states. Let
u=av € L,N X" withn > 1 and lety € §(q,z) such thaw € L, . Because of

our induction hypothesis; € L, . Asq’ € 6(q,z), we havexL, C L, and therefore
xv € L. O

Corollary 1. Let A be a NFA andS(A) be its saturated. TheA and S(A) recognize
the same language arff{A) = S(S(A)).

Proof:

— We haveL = U{L,|q € Qo} = U{Lylqg € Qo} = U{L,|q € Qo} which is equal
to the language recognized By A).

— Due to the previous point and to the propositign 2, lerhina 1 can be appligd on
andS(A) to prove thatS(S(A)) = S(A); the saturated of a saturated automaton is
itself.

|

Corollary 2. If Ais a RFSAther$(A) is also a RFSA.

Proof: The saturated of a RFSA is a RFSA as the saturation changes neither the lan-
guages associated with the states nor the language recognized by the automaton.

4.3 Reduction Operator¢

We define aeductionoperatory that deletes states in an automaton without changing
the language it recognizes.

Definition 5. Let A = (¥, @, Qo, F, 6) be a NFA, and ley be a state of). We note
R(q) ={q¢ € Q\{q} | Ly C Ly}. We say thay is erasableind if L, = |J{L, \¢ €
R(q)}.
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If g is erasable, we defin( A, q) = A" = (X, Q’', Qi, F', ") where:

- Q' =Q\{q},
Q)= Qoif q ¢ Qo andQ) = (Qo \ {a}) U R(q) otherwise,
- F'= FﬂQI!

— foreveryq’ € Q' and everyr € X

6(¢',x)ifq € o(q,x)

6'(¢',x) = § (8(',2) \ {g}) U R(q)
otherwise.

If ¢ is not erasable, we defing A, ¢) = A.

Letq’ € Q be a state different from. We noteL, the language generated frarh
in the automatoni and L}, the language generated frafhin A" = ¢(4, q).

Proposition 3. Let A be a NFA and ley; be a state ofd. The automatad and A’ =
$(A, q) recognize the same language and for every sfaté ¢, Ly = L, .

Sketch of proof:

If ¢ is not an erasable state, the proposition is straightforwargidfan erasable
state, we first prove that, = le, using the fact that every path that allows to read
a wordu in A throughg corresponds to a path i’ that uses an added transition and
vice-versa.

Finally, we prove thal. 4 = quer Ly, = (que% LfIO) =Ly

Proposition 4. The operatorp is an internal operator for the class of RFSA.

Proof: Neither the language recognized by a RF84or the languages associated

with its states are modified by the reduction operatde.f. previous proposition). So,

languages associated with states keep being residual languafjgs of O
We prove now that saturation and reduction operators can be swapped.

Lemma?2. Let A = (¥, Q,Qo, F,0) be a NFA and ley be a state of). Then the
automatonp(S(A), q) is saturated.

Proof: We noteLjI, (resp.L,) the language associated with a stgltén ¢(S(A), q)
(resp. inS(A)), ' (resp.d) the transition function of(S(A), q) (resp. inS(A)) andL
the language recognized by the autométa'(A) andé(S(A), q).

- If L}, C LthenL, C L and sog’ is initial in S(A) and ing(S(A), q).
—If 2L}, C L, thenzLy, C Ly and sog’ € 6(¢”, ) andq’ € §'(¢", x).
0

Proposition 5. Let A = (¥, Q, Qo, F, 6) be a NFA and let; be a state of). We have

S(0(A;q)) = ¢(S(A), q)
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Proof: ¢(A,q) and$(S(A), q) have the same set of states. Furthermore, languages as-
sociated with every statg in ¢(A, ¢) and¢(S(A), ¢q) are identical because of previous
lemmas. Because of lemmb3(¢(A, q)) = S(#(S(A),q)). As ¢(S(A), q) is a satu-
rated automaton (cf lemnia 2), the proposition is proved. O

Definition 6. Let A be a NFA. If there is no erasable state in A, we say thas re-
duced

4.4 Canonical RFSA

Definition 7. Let L be a regular language. We defide= (X, Q, Qo, F, 0) the canon-
ical RFSA ofL in the following way:

— Y is the alphabet of,

— Q is the set of prime residuals &f soQ = {u~'L | u~'L is prime},

— its initial states are prime residuals includedin soQ = {u 'L € Q | u~ 'L C
L},

- its} final states are prime residuals containing the empty wordi’se {u~!L €
Qleeu 'L},

— its transition function isf(u 'L, z) = {v"'L € Q | v 'L C (uz) 'L}.

This definition assumes that the canonical RFSA is a RFSA, we will prove this
presumption below.

We have proved that the reduction operagotransforms a RFSA into a RFSA,
and that it could be swapped with the saturation operator. We prove now thiats if
a saturated RFSA, the reduction operator converges and that the resulting automaton is
the canonical RFSA of the language recognizediby

Proposition 6. Let L be a regular language and let = (X', Q, Qo, F, §) be areduced
and saturated RFSA recognizirdg A is the canonical RFSA dfi.

Proof: As A is a RFSA, every prime residuat™' L of L can be defined as a language

L, associated with some states= (). As there are no erasable statesdinfor every
stateq, L, is a prime residual and distinct states define distinct languages! i&s
saturated, prime residuals containedlircorrespond to initial states @p,. For the

same reason, we can verify that the transition function is the same as in the canonical
RFSA. 0

Theorem 1. The canonical RFSA of a regular languafjés a RFSA which recognizes
L and which is minimal regarding the number of states.

Proof. Let Ay,..., A, be a sequence of NFA such that for every index 1, there
exists a state; of 4;_; such thatd; = ¢(A4;_1,q;). Propositio b anfl6 prove that if
Ag is a saturated RFSA and 4, is reduced, thend,, is the canonical RFSA of the
language recognized by;.

So the canonical RFSA can be obtained from any RFSA that recoghizsing
saturation and reduction operators. Proposition 1 proves that it has a minimal number
of states. O

Remark that it is possible to find a RFSA that has as many states as the canonical
RFSA of L, but fewer transitions. We have the following proposition:
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Theorem 2. The canonical RFSA of a regular languagés the unique RFSA that has
a maximal number of transitions among the set of RFSA which have a minimal number
of states.

Proof: Let A = (¥, Q,Qo, F,d) be the canonical RFSA of a languadgeand let
A = (X,Q,Qy, F', ") be a RFSA which has a minimal number of states..8ads
reduced. From propositidd 6, the saturated automatotf & A. Therefore, A’ has at
most as many transitions as O

5 Construction of the Canonical RFSA Using the Subset Method

In the previous section, we provided a way to build the canonical RFSA from a given
NFA using saturation and reduction operators. This method requires to check whether a
language is included into another one and to check whether a language is composed or
not. Those checks can be very expensive, even for simple automata. We present in this
section another method which stems from a classical construction of the minimal DFA
of a language and which is easier to implement.

Let A = (¥, Q,Qo, F,0) be a NFA. The subset construction is a classical method
used to build a DFA equivalent to a given NFA. It consists in building the set of reach-
able sets of states of. We noteQ r(4) = {p € 29 | 3u € X* s.1.6(Qo,u) = p} and
we define the subset automatbiA) = (¥, Qp, @po, Fp,dp) with

Qp = Qra),
Qpo = {Qo},
Fp={p€Qp|pnF+0},
op(p,x) = 6(p, x).
The automatorD(A) is a determi-nistic automaton that recognizes the same lan-
guage asA.

We remind that (resp.B) denotes the mirror of a languaggresp. of an automa-
ton B). The following result provides a method to build the minimal DFALof

Theorem 3. [Brz62] Let L be aregular language and lét be an automaton such that
B is a DFA that recognizeg. ThenD(B) is the minimal DFA recognizing.

We can deduce from this theorem tHatD(A)) is the minimal DFA recognizing
the languagd. 4.

We adapt the subset construction technique to deal with inclusions of sets of states.
We say that a state € Qgr(4) is coverableif there exist statep; € Qra), i # p,
such thap = U;p,;. We define the automatdii(A) = (¥, Q¢, Qco, Fo, dc) by

Qc ={pr € Qra) |
p is not coverablé,
Qco=1{p € Qc |p < Qo},
Fe={peQc|pnF #0},
dc(p,x) ={p' € Qc | P Cd(p,x)}.
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Lemma 3. Let A be a NFA,C(A) is a RFSA recognizing 4 such that all states are
reachable.

Sketch of proof: C(A) can be obtained fronD(A) by using techniques which are
similar to the ones used by the reduction operator. O

Theorem 4. Let L be a regular language and lég be an automaton such that is
a RFSA recognizind such that all states are reachable. Th€iiB) is the canonical
RFSA recognizingd..

Sketch of proof: .
Letg; € @B, let L, be the language associated within B and letv; € X" be
such thatl,, =v;'L. Letp, p’ € Qr(5). We prove that:

—v; € L,iff ¢; €p.
- Lp g Lp’ iff p g p/-
— Forevery stat@, p1, p2 ... pn € Qr(B), Lp = Ur<k<n Ly, Iff p=Ur<p<npi.

From the last three statements, we can provedi&t) can be obtained from(B)
by reduction and saturation. A3(B) is deterministic, and using propositibh®(B)
is the canonical RFSA af. o O
We can deduce from this proposition and from lenfiina 3¢h@t (A)) is the canon-
ical RFSA of L 4.
However, this construction also has some weaknesses. Indeed, it is possible to find

examples for whick(A) has an exponential number of states with regard to the num-

ber of states ofd or C(C(A)). We can observe this situation with the mirror of the
automaton used in the propositign 8.

We can also observe that, if we are interested only in covering without saturation (if
a state is covered, we delete it and we relead its transitions to covering states), we get a
RFSA which has the same number of states (non-coverable states) and fewer transitions.

6 Results on Size of RFSA

We classically take the number of states of an automaton as a measure of its size. The
canonical RFSA of a regular language has the size of the equivalent minimal DFA as an
upper bound and the size of one of its equivalent minimal NFA as a lower bound. We
show that both bounds can be reached even if there exists an exponential gap between
these two bounds.

Proposition 7. There exist languages for which the minimal DFA has a size exponen-
tially larger than the size of the canonical RFSA, and for which the canonical RFSA
has the same size as minimal NFA.

Proof: X*0X™ languages, where is an integer andC = {0, 1}, can illustrate this
proposition.

Residuals of.L. = X*0X™ are languages U (U, p £7) whereP C {0,...,n}.
One can observe that there exXt! distinct residuals. The minimal DFA recognizing
this language hag"*! states. There exist only + 2 prime residualsL, L U X°, ...,

L U X™, so, the canonical RFSA df hasn + 2 states. O
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Proposition 8. There exist languages for which the size of the canonical RFSA is ex-
ponential with regard to the size of a minimal NFA.

Proof: Let A,, = (¥, Q, Qo, F, §) be automata such that, for> 1

- Y ={a,b},
-Q={¢10<i<n-1},
— ¢ is defined by

3(gisa) = qiy1 (for 0 <i <n —1),
5(%71761) = qo,
(g0, b) = qo,
0(qi,b) = gi—1 (for1 <i < n)and
6(q1,0) = gn-1,

- Qo={q¢|0<i<n/2},

- F={q}.

Figurd® representd,.

Fig.5. An automatonA,,, n = 4, for which the Equivalent RFSA Is Exponentially
Larger.

The mirror automatad,, are trimmed and deterministic, thus we can apply theo-
rem[4. The automat@(A,,) are canonical RFSA.

The initial state of the subset construction h@2 elements. Moreover the reachable
states are all the states withi2 elements. So, none of them is coverable.

The canonical RFSAU(A,,) are exponentially larger than the initial NFA. O

Proposition 9. There exist languages for which the smallest characterizing word for
some state has a length exponentially bigger than the number of states of the canonical
RFSA.

Sketch of prooflLet P = {p1,...,p,} be a set of distinct prime numbers. We define
the NFAAp = (X, Q, Qo, F, d) by:

- Y ={a}U{b,|pe P}

-Q={¢|peP,0<i<p}
- Qo={q)|peP}
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- F=0Q

— ¢ is defined by:
6(6111‘)’ a) = {qfi+1)mod p}
for0<i<p,peP,

6(qf,bp) = {qfaqu+1}
foro0<i<p-—1,p,p €P,

o(ap_1,bp) = {ap }
forp,p’ € P.

The following results can be proved:

— ApisaRFSA.

— The smallest characterizing wotd of a stateg € @ is such thafu,| > II;p;
which is exponential with regard to the size 4f and therefore exponential with
regard to the size of the canonical RFSA.

O
Let A = (X¥,Q,Qo, F, ) be a RFSA and leg € ) such thatZ, is prime. There
must exist a smallest word € L, such thatL,, C L, = u ¢ L, . Next proposition
proves that this word can be very long.

Proposition 10. There exist languages for which the smallest word that proves that a
state of the canonical RFSA is not composed has an exponential size with regard to the
number of states of the minimal DFA.

Proof: Let p1,...p, be distinct prime numbers. For eaghl < i < n, we notel; =
{e}u{a* | p; is not a divisor ofk}. Letby, by,... b, be distinct letters different from.
We consider the languade= boa* U (U, <;<,, biLs)-

We can easily build a minimal DFA for this language ; it contding; +n+2 states.
The languagé; ' L = a* is notan union of residuals ' L, 7 > 1. But the shortest word
that belongs t@alL\UlgiSnb;lLi is aP'-P» and its length is exponential with regard
to the size of the minimal DFA. O

7 Complexity Results about RFSA

We have defined notions of RFSA, saturated automata, canonical RFSA ; in this section,
we evaluate the complexity of our constructions and of decision problems linked to
them: deciding if an automaton is saturated, building the canonical RFSA of a given
language, and soon...

Classical definitions about complexity can be found.in [GJ79] and complexity re-
sults about automata can be found.in [HU79]. We present here simple complexity results
about RFSA, proofs of which can be found[in [DLT00b].

The first notion that we defined is the notion gdturation As one could guess,
deciding if an automaton is saturated is easier for a DFA than for a NFA.

Proposition 11. Deciding whether a DFA is saturated is a polynomial problem. On the
other hand, deciding whether a NFA is saturated i®# &P AC E-complete problem.
Building the saturated of a NFA is alsolaS P AC E-complete problem.
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The next proposition tells us that it is not practically possible, in the worst case, to
check whether a NFA is a RFSA.

Proposition 12. Deciding if a NFA is a RFSA is 85 P AC E-complete problem.

Building the canonical RFSA equivalent to a given NFA is an exponential problem
in general, as proved by propositioh 8. The next proposition tells us that, even if the
starting automaton is deterministic, this problen#iS P AC E-complete. The problem
of deciding whether the saturated of a DFA is a canonical RFSA isRsBACE-
complete.

Proposition 13. Deciding if the saturated of a DFA is a canonical RFSA is a
PSPACE-complete problem. Building the canonical RFSA equivalent to a DFA is
also aPSPAC E-complete problem.

8 Comments and Conclusion

Ideas developed in this paper come from a work done in the domain of Grammatical
Inference. A main problem in this field is to infer efficiently (a representation of) a reg-
ular language from a finite set of examples of this language. Some positive results can
be proved when regular languages are represented by Deterministic Finite Automata
(DFA). For example, it has been proved that Regular Languages represented by DFA
can be infered frongiven data[Gol78,Hig97]). In this framework, classical inference
algorithms such as RPNIL([OG92]) need a polynomial number of examples relatively
to the size of the minimal DFA that recognizes the language to be infered. So, regu-
lar languages as simple a8'0X™ cannot be infered efficiently using these algorithms
since their minimal DFA have an exponential number of states. Hence, it is a natu-
ral idea to try to use other kind of representations for regular languages, such as Non
deterministic Finite Automata (NFA). Unfortunately, it has been proved that Regular
Languages represented by NFA cannot be efficiently infered from given data ([Hig97]).
We described in [DLT00a] an inference algorithbBel e T¢ that computes the canoni-

cal RFSA of a target regular language from given data. Using this algorithm, languages
such as¥*0X"™ become efficiently learnable. So, introducing the class of RFSA in
the field of grammatical inference seems to be a promising idea. However, we have to
deal with the fact that most decision and construction problems linked to the class of
RFSA are untractable in the worst case. What are the practical consequences of these
worst-case complexity results ? Experiments we are currently leading in the field of
grammatical inference let us think that they could be not too dramatic.

While achieving this work, we have felt that RFSA was a class of automata worth
being studied for itself, from a language theory point of view and this is what we have
done in this paper. The class of RFSA has a very simple definition. It provides a de-
scription level of regular languages which is intermediate between a representation by
deterministic automata and a representation that uses the whole class of non determin-
istic automata. RFSA shares two main properties with the class of DFA: the existence
of a canonical minimal form and the fact that states correspond to natural component of
the recognized language. Moreover canonical RFSA can be exponentially smaller than
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the equivalent minimal DFA. All these properties show that the RFSA is an interesting
class whose study must be carried on.
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