

Jochen Hoenicke Tanja Schindler 22.10.2019 submit until 29.10.2019, 14:15

Tutorials for Decision Procedures Exercise Sheet 1

Exercise 1: The NOR Connective

The logical connective \downarrow ("nor") has the following truth table:

F_1	F_2	$F_1 \downarrow F_2$
0	0	1
0	1	0
1	0	0
1	1	0

- (a) Prove that ⊤, ⊥ and the standard logical connectives ¬, ∧, ∨, →, and ↔ can be represented by ↓.
 Hint: Start with ¬ and ∨.
- (b) Give an algorithm that transforms any propositional formula into NOR normal form, i.e. a formula containing only propositional variables, parentheses and \downarrow .

Exercise 2: Validity and Satisfiability

Which of the following formulae is valid, which is satisfiable? If a formula is valid or unsatisfiable, give a proof via a truth table or a semantic argument. Otherwise, give a satisfying and a falsifying interpretation.

(a)
$$P \to (Q \to P)$$

(b)
$$P \lor \neg P \land Q$$

(c)
$$(P \to (Q \to R)) \to (P \to R)$$

(d)
$$(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q) \land P \land \neg R$$

Exercise 3: Negation Normal Form

Convert the following formulae into Negation Normal Form (NNF) using the template equivalences from the lecture.

(a)
$$P \rightarrow (Q \rightarrow R)$$

(b) $\neg (P \rightarrow Q) \lor (P \land Q)$
(c) $(P \land Q \rightarrow (Q \lor R)) \land (\neg P \rightarrow R)$
(d) $P \leftrightarrow (P \lor Q)$

u ₄.

4 Points

4 Points

4 Points