Tutorials for Decision Procedures Exercise Sheet 5

Exercise 1: Prenex Normal Form

4 Points
Transform the following formulae into prenex normal form.
(a) $\forall x \cdot(q(x) \vee(\forall x \cdot p(x, x)))$
(b) $r(x, y) \wedge \forall x .((\forall y \cdot p(x, y)) \rightarrow q(x))$
(c) $(\exists x \cdot \forall y \cdot p(x, y)) \rightarrow(\forall y \cdot \exists x \cdot p(x, y))$
(d) $\neg(\forall x .(p(x, x) \rightarrow \forall y . p(x, y)))$

Exercise 2: Semantic Argument in T_{E}

4 Points
Are the following Σ_{E}-formulae valid?
Give a semantic argument proof or a counterexample (i.e., a falsifying T_{E}-interpretation).
(a) $f(x, y)=f(y, x) \rightarrow f(a, y)=f(y, a)$
(b) $\forall x \cdot \exists y \cdot f(x, y)=f(y, x)$
(c) $f(f(a))=f(a) \wedge f(f(f(a)))=a \rightarrow f(a)=a$

Exercise 3: Arithmetic over Integers and Natural Numbers
 4 Points

Consider the following formula.

$$
F: \exists x . \forall y . \neg(y+1=x)
$$

(a) View F as a $\Sigma_{\mathbb{Z}}$-formula, and prove $T_{\mathbb{Z}}$-unsatisfiability of F following the approach in the lecture, i.e., perform the following steps.
(i) Convert F into an equisatisfiable $\Sigma_{\mathbb{N}}$-formula G.
(ii) Prove $T_{\mathbb{N}}$-unsatisfiability of G using the semantic argument. You may assume that associativity and commutativity of addition holds.
(b) View F as a $\Sigma_{\mathbb{N}}$-formula, and prove $T_{\mathbb{N}}$-validity of F using the semantic argument.

