Tutorials for Decision Procedures
 Exercise Sheet 6

Exercise 1: $T_{\mathbb{N}}$ vs. $T_{\mathbb{Q}}$ vs. $T_{\mathbb{R}}$
4 Points
Show validity of the following formula in each of the three theories $T_{\mathbb{N}}, T_{\mathbb{Q}}$, and $T_{\mathbb{R}}$ by giving semantic argument proofs.

$$
F: \neg(1+1=0)
$$

Exercise 2: Semantic Argument in Theories

Show validity of the following formulae in the combination of the theories $T_{\mathrm{E}}, T_{\mathbb{Q}}, T_{\text {cons }}$, and T_{A}. You can use all axioms of these four theories. You can use abbreviations as in the slides or the book for introducing theory axioms.
(a) $f(x+y) \neq f(x) \rightarrow y \neq 0$
(b) $a\langle i \triangleleft a[i]\rangle[j]=a[j]$
(c) $\neg \operatorname{atom}(x) \wedge \operatorname{car}(x)=y \wedge \operatorname{cdr}(x)=z \rightarrow \operatorname{cons}(y, z)=x$
(d) $\operatorname{cons}(x, y)=\operatorname{cons}(y, z) \rightarrow x=y$

Exercise 3: Quantifier Elimination for $T_{\mathbb{Q}}$

Apply quantifier elimination to the following $\Sigma_{\mathbb{Q}}$-formulae. In each case, eliminate all quantifiers.
(a) $\exists y .(x=2 y \wedge y<x)$
(b) $\forall y .(25<x+2 y \vee x+2 y<25)$
(c) $\forall x \cdot \exists y \cdot(y>x \wedge-y<x)$
(d) $\forall x .(x>0 \leftrightarrow \exists y .(x>y \wedge-x<y))$

