

Jochen Hoenicke Tanja Schindler

Tutorials for Decision Procedures Exercise Sheet 7

Exercise 1: Quantifier Elimination for $T_{\mathbb{Q}}$ **: Sufficient Set** 4 Points For $T_{\mathbb{Q}}$ the quantifier elimination algorithm in the lecture examines terms $\frac{s+t}{2}$ for all $s, t \in S$. Suppose we split up S in S_A , S_B , S_C depending on whether the term t comes from a literal of type (A) x < t, (B) t < x, or (C) x = t. Based on this distinction, give a smaller set of terms that still is sufficient.

Exercise 2: Quantifier Elimination for $\widehat{T}_{\mathbb{Z}}$ 4 Points Apply quantifier elimination to the following $\Sigma_{\mathbb{Z}}$ -formulae. In each case, eliminate all quantifiers.

(a) $\exists y. (x = 2y \land y < x)$

(b)
$$\forall y. \ (25 < x + 2y \lor x + 2y < 25)$$

(c) $\exists x. \exists y. 3x + y = 6 \land y < x \land 0 < x \land 0 < y$

Exercise 3: Congruence Closure Algorithm for T_{E} 4 Points Apply the congruence closure algorithm to decide satisfiability for the following Σ_{E} -formulae. You do not need to display all the intermediate graphs, only the final graph. But please write down all merge steps in the order they are performed.

(a)
$$f(a) = f(b) \land a \neq b$$

(b)
$$f(f(a)) = f(a) \wedge f(f(f(a))) = a \wedge f(a) \neq a$$

(c)
$$f(f(f(a))) = f(a) \wedge f(f(a)) = a \wedge f(a) \neq a$$

(d) $f(g(a)) = g(f(a)) \wedge f(g(f(b))) = a \wedge f(b) = a \wedge g(f(a)) \neq a$

Bonus Exercise 4: Implementing Quantifier Elimination for $T_{\mathbb{Q}}$ 4 Bonus Points Implement the quantifier elimination algorithm for $T_{\mathbb{Q}}$ from the lecture. SMTInterpol can be started with a special -script option giving a different solver file. This way you do not need to take care of parsing and most other technicalities. A template file, which also contains the NNF-conversion and some more hints, and starting instructions are given on the lecture website.