

Jochen Hoenicke Tanja Schindler 07.01.2020 submit until 14.01.2020, 14:15

Tutorials for Decision Procedures Exercise Sheet 10

Exercise 1: Quantifier-free T_A 4 Points Apply the decision procedure for quantifier-free T_A to decide satisfiability of the following Σ_A -formulae:

- (a) $a\langle i \triangleleft e \rangle[j] = e \land i \neq j$
- (b) $a\langle i \triangleleft e \rangle [j] = f \land i = j \land e \neq f$
- (c) $a\langle i \triangleleft e \rangle \langle j \triangleleft f \rangle [i] = g \land e \neq g$
- (d) $a\langle i \triangleleft e \rangle \langle j \triangleleft f \rangle [i] = g \land e \neq g \land i \neq j$

Exercise 2: Array Property Fragment of $T_{A}^{\mathbb{Z}}$ Check *unsatisfiability* of the formulae

4 Points

- (a) $sorted(a, \ell, u) \land contains(a, \ell, u, v) \land v > a[u]$
- (b) $sorted(a, \ell, u) \land \neg partitioned(a, \ell, k, k, u)$

where *contains*, *sorted* and *partitioned* are defined as usual:

 $\begin{aligned} & contains(a,\ell,u,v): \quad \exists i. \ \ell \leq i \leq u \land a[i] = v \\ & sorted(a,\ell,u): \quad \forall i,j. \ \ell \leq i \leq j \leq u \ \rightarrow \ a[i] \leq a[j] \\ & partitioned(a,\ell_1,u_1,\ell_2,u_2): \quad \forall i,j. \ \ell_1 \leq i \leq u_1 \land \ell_2 \leq j \leq u_2 \ \rightarrow \ a[i] \leq a[j] \end{aligned}$

You don't have to write down all clauses, only the ones needed to show unsatisfiability.

Exercise 3: Correctness of Decision Procedure for $T_{\mathsf{A}}^{\mathbb{Z}}$ 4 Points Let I and J' be interpretations with $\alpha_{J'}[i] = \overline{v}$ and $\alpha_{J'}[x] = \alpha_I[x]$ for all symbols except $\cdot [\cdot]$ and the variables \overline{i} . In particular $\alpha_{J'}[t] = \alpha_I[t]$ for all $t \in \mathcal{I}$. Prove for $F[\overline{i}] : expr \leq expr$ that $J' \models F[\overline{i}] \rightarrow F[proj_I(\overline{v})]$. The expression expr is either one of the universal variables i_k or it is a pexpr contained in \mathcal{I} . You can use that $proj_I(v) \in \mathcal{I}$ and that

either $\alpha_I[proj_I(v)] \leq v$ and $\alpha_I[t'] \leq \alpha_I[proj_I(v)]$ for all $t' \in \mathcal{I}$ with $\alpha_I[t'] \leq v$ or $v < \alpha_I[proj_I(v)]$ and $\alpha_I[proj_I(v)] \leq \alpha_I[t']$ for all $t' \in \mathcal{I}$.