Jochen Hoenicke Tanja Schindler

14.01.2020 submit until 21.01.2020, 14:15

Tutorials for Decision Procedures Exercise Sheet 11

Exercise 1: Nondeterministic Nelson–Oppen Method 2 Points Apply the nondeterministic version of the Nelson–Oppen theory combination method to decide $T_{cons} \cup T_{\mathbb{Q}}$ -satisfiability of the following formula.

$$cons(x,y) = z \wedge car(z) = 1 \wedge 2x + y \le 4 \wedge x + 2y \ge 5$$

Exercise 2: Deterministic Nelson–Oppen Method 4 Points Apply the deterministic version of the Nelson–Oppen theory combination method to decide $T_{\mathsf{E}} \cup T_{\mathbb{Q}}$ -satisfiability of the following formulae.

(a)
$$x + y = z \land f(z) = x + y \land f(f(x + y)) \neq z$$
.
(b) $g(x + y, z) = f(g(x, y)) \land x + z = y \land z \ge 0 \land x \ge y \land g(x, x) = z \land f(z) \neq g(2x, 0)$

Exercise 3: Equality Propagation

The deterministic version of the Nelson–Oppen theory combination method requires that the involved theories propagate new equalities between the shared variables.

The congruence closure algorithm for the theory of equality T_{E} can easily be modified to propagate all implied equalities. Describe such a modification.

Exercise 4: DPLL(T)

Compute the propositional core of the following $\Sigma_{\mathbb{Q}}$ -formula in CNF.

$$(z \le 1 \to x \le y) \land y + z \le x \land 0 \le z \land (z > 1 \to x + z \le y)$$

2 Points

4 Points