
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Winter Term 2019/2020

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 1 / 442



Craig Interpolation



Interpolation

A decision procedure for satisfiability has two possible outcomes:

satisfiable, model: valuation for uninterpreted symbols

unsatisfiable, with proof

Is there something simpler than a proof?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 386 / 442



Introduction

Given an unsatisfiable conjunction of two formulas:

F ∧ G is unsatisfiable,

i.e.,

F ⇒ ¬G

Can we find a “small” formula that explains this?

A formula implied by F that implies ¬G?

Under certain conditions, there is an interpolant I with

F ⇒ I .

I ⇒ ¬G , i. e., I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 387 / 442



Craig Interpolation

A Craig interpolant I for an unsatisfiable formula F ∧ G is a formula s.t.

F ⇒ I .

I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Craig interpolants exists in many theories and fragments:

First-order logic.

Quantifier-free FOL.

Quantifier-free fragment of TE.

Quantifier-free fragment of TQ.

Quantifier-free fragment of T̂Z (augmented with divisibility).

Quantifier-free fragment of T̂=
A (augmented with difference).

However, QF fragment of TZ does not allow Craig interpolation.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 388 / 442



Motivation: Program correctness

Consider this path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
i := `

assume i ≤ u

assume a[i ] 6= e

i := i + 1

assume i ≤ u

@ 0 ≤ i ∧ i < |a|

Single Static Assingment (SSA)
replaces assignments by assumes:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 389 / 442



Program correctness and Interpolants

The program contains only assumes. Therefore, the VC is

VC : P → (F1 → (F2 → (F3 → . . . (Fn → Q) . . . )))

Using ¬(F → G ) ⇔ F ∧ ¬G compute negation:

¬VC : P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ ¬Q

If verification condition is valid ¬VC is unsatisfiable. We can compute
interpolants for any program point, e.g. for

P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ ¬Q

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 390 / 442



Verification Condition and Interpolants

Consider the path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|

The negated VC is unsatisfiable:

0 ≤ ` ∧ u < |a| ∧ i1 = `

∧ i1 ≤ u ∧ a[i1] 6= e ∧ i2 = i1 + 1

∧ i2 ≤ u ∧ (0 > i2 ∨ i2 ≥ |a|)

The interpolant I for the red and
blue part is

i1 ≥ 0 ∧ u < |a|

This is actually the loop invariant
needed to prove the assertion.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 391 / 442



Computing Interpolants

Given an unsatisfiable conjunction F1 ∧ Fn ∧ G1 ∧ Gn.

How can we compute an interpolant?
Answer: it depends on the theory fragment.

We will show an algorithm for

Quantifier-free conjunctive fragment of TE.

Quantifier-free conjunctive fragment of TQ.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 392 / 442



Computing Interpolants for TE

F1 ∧ · · · ∧ Fn ∧ G1 ∧ · · · ∧ Gn is unsat

Let us first consider the case without function symbols.
The congruence closure algorithm returns unsat. Hence,

there is a disequality v 6= w and

v ,w are connected by equality or congruence edges.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 393 / 442



Example

v 6= w ∧ x = y ∧ y = z ∧ z = u ∧ w = s ∧ t = z ∧ s = t ∧ v = x

v x y

z u

s tw

6=

Disequality: v 6= w
Equality chain:

v = x ∧ x = y ∧ y = z ∧ z = t ∧ t = s ∧ s = w

The interpolant “summarizes” the red edges: I : v 6= s ∧ x = t

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 394 / 442



Edges in Congruence Closure Graph

Problem: Congruence closure graph draws edges between representatives
instead of the equal terms. This makes finding the paths harder.

x y
?

+

+

Solution: Change merge algorithm:

Make one of the terms the representative by inverting edges to root

Draw outgoing edge from the new representative directly to the equal
term

Every term still has only one outgoing equality edge.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 395 / 442



Computing Interpolants for TE

Given conjunctive formula:

F1 ∧ · · · ∧ Fn ∧ G1 ∧ · · · ∧ Gm

The following algorithm can be used:

Build the congruence closure graph.

Find the disequality s 6= t that contradicts equalities.

Find the path from s to t in the equality graph and add a disequality
edge from s to t to close circle.

For each congruence, find the path between the arguments.

Color edges from Fi red, and edges from Gj blue.
Color congruence red if it connects two terms from F1 . . .Fn.

Remove all blue paths.

Summarize each of the remaining red components.

Interpolant is the conjunction of summaries.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 396 / 442



Summarize Components

A sequence of equalities is summarized by a single equality between end
points:

x = y = z = t has summary x = t

If a sequence contains the single disequality, the summary is a disequality

s = w 6= v has summary s 6= v

If the whole cycle is in A, the summary is ⊥.

s = w 6= v = x = y = z = t = s has summary ⊥

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 397 / 442



Summarizing Congruence Edges (Case 1)

Case 1: The congruence edge is colored red.

For each argument path with a gap, add a disequality between the
endpoints (where the gap is).

Summarize the component as if the congruence was an equality.

The summary is the disjunction of the above formulas.

f (i1) = x ∧ f (i4) = y ∧ i1 = i2 ∧ i3 = i4 ∧ i3 = i2 ∧ x 6= y

f yx f

i4i3i2i1

Summary:
i2 6= i3 ∨ x = y

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 398 / 442



Handling Congruence Edges (Case 2)

Case 2: The congruence edge is not colored red.

For each argument, find the endpoint of the corresponding path.

Apply the function to the end point and connect with a red edge.

Summarize as usual, ignoring the partial argument paths.

f (i1) = x ∧ i2 = i1 ∧ i3 = i2 ∧ f (i3) 6= x

x f

i2i1

f

Summary: x = f (i2).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 399 / 442



Example

F : f (g(x)) = y ∧ x 6= y

G : x = f (z) ∧ x = f (g(f (z)))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 400 / 442



Example

F : y = x ∧ x 6= f (g(y)) ∧ f (x) = w

G : x = w ∧ x = z ∧ g(z) = x

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 401 / 442



Computing Interpolants for TQ

First apply Dutertre/de Moura algorithm.

Non-basic variables x1, . . . , xn.

Basic variables y1, . . . , ym.

yi =
∑

aijxj

Conjunctive formula
y1 ≤ b1 . . . ym′ ≤ bm′ ∧ ym′+1 ≤ bm′+1 . . . ym ≤ bm.

The algorithm returns unsatisfiable if and only if there is a line:
x · · · x y · · · y y · · · y

...
yi/yi 0 · · · 0 −/0 · · · −/0 −/0 · · · −/0

...

yi =
∑
−ckyk , ck ≥ 0 and

∑
−ckbk > bi

(the constraint yi ≤ bi is not satisfied)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 402 / 442



Computing Interpolants for TQ

The conflict is:

bi ≥ yi =
∑
−ckyk ≥

∑
−ckbk > bi

or
0 = yi +

∑
ckyk ≤ bi +

∑
ckbk < 0

We split the y variables into blue and red ones:

0 =
m′∑
k=1

ckyk +
m∑

k=m′+1

ckyk ≤
m′∑
k=1

ckbk +
m∑

k=m′+1

ckbk < 0

where ck ≥ 0, (ci = 1). The interpolant I is the red part:

m′∑
k=1

ckyk ≤
m′∑
k=1

ckbk

where the basic variables yk are replaced by their definition.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 403 / 442



Example

x1 + x2 ≤ 3 ∧ x1 − x2 ≤ 1 ∧ x3 − x1 ≤ 1 ∧ x3 ≥ 4

y1 := x1 + x2 b1 := 3 y3 := −x1 + x3 b3 := 1

y2 := x1 − x2 b1 := 1 y4 := −x3 b4 := −4

Algorithm ends with the tableau

1 1 -4
y2 y3 y4 β

y1 -1 -2 -2 5
x1 0 -1 -1 3
x2 -1 -1 -1 2
x3 0 0 -1 4

Conflict is 0 = y1 + y2 + 2y3 + 2y4 ≤ 3 + 1 + 2 − 8 = −2.
Interpolant is: y1 + y2 ≤ 3 + 1
or (substituting non-basic vars): 2x1 ≤ 4.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 404 / 442



Correctness

Fk : yk :=
n∑

j=0

akjxj ≤ bk , (k=1,...,m) Gk : yk :=
n∑

j=0

akjxj ≤ bk , (k=m′,...,m)

Conflict is 0 =
m′∑
k=1

ckyk +
m∑

k=m′+1

ckyk ≤
m′∑
k=1

ckbk +
m∑

k=m′+1

ckbk < 0

After substitution the red part
m′∑
k=1

ckyk ≤
m′∑
k=1

ckbk becomes

I :
n∑

j=1

(
m′∑
k=1

ckakj

)
xj ≤

m′∑
k=1

ckbk .

F ⇒ I (sum up the inequalities in F with factors ck).
I ∧ G ⇒ ⊥ (sum up I and G with factors ck to get 0 ≤

∑m
k=1 ckbk < 0).

Only shared symbols in I: 0 =
∑m′

k=1 akjckxj +
∑m

k=m′+1 akjckxj .
If the left sum is not zero, the right sum is not zero and xj appears in F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 405 / 442



Interpolation and DPLL

Given the input:

F : (p ∨ r) ∧ (p ∨ q)

G : (q ∨ r ∨ s) ∧ (r ∨ s) ∧ (q ∨ s) ∧ (q ∨ r ∨ s)

〈ε,F ∧ G ,>〉 Decide−→ 〈r�,F ∧ G ,>〉 Propagate−→ 〈r�sr∨s ,F ∧ G ,>〉 Propagate−→
〈r�sr∨sqq∨s ,F ∧ G ,>〉 Conflict−→ 〈r�sr∨sqq∨s ,F ∧ G , q ∨ r ∨ s〉 Explain−→
〈r�sr∨sqq∨s ,F ∧ G , r ∨ s〉 Explain−→ 〈r�sr∨sqq∨s ,F ∧ G , r〉 Learn−→
〈r�sr∨sqq∨s ,F ∧ G ∧ r , r〉 Back−→ 〈r r ,F ∧ G ∧ r ,>〉 Propagate−→
〈r rpp∨r ,F ∧ G ∧ r ,>〉 Propagate−→ 〈r rpp∨rqp∨q,F ∧ G ∧ r ,>〉 Propagate−→
〈r rpp∨rqp∨qsq∨r∨s ,F ∧ G ∧ r ,>〉 Conflict−→ 〈r rpp∨rqp∨qsq∨r∨s ,F ∧ G ∧
r , q ∨ s〉 Explain−→ 〈r rpp∨rqp∨qsq∨r∨s ,F ∧ G ∧ r , q ∨ r〉 Explain−→
〈r rpp∨rqp∨qsq∨r∨s ,F ∧ G ∧ r , p ∨ r〉 Explain−→
〈r rpp∨rqp∨qsq∨r∨s ,F ∧ G ∧ r , r〉 Explain−→ 〈r rpp∨rqp∨qsq∨r∨s ,F ∧ G ∧ r ,⊥〉

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 406 / 442



Computing Interpolants for DPLL(T)

Every explain step is a resolution step

` ∨ C1 ` ∨ C2

C1 ∨ C2

These can be put together to a proof tree:

⊥

r

p ∨ r

q ∨ r

q ∨ s q ∨ r ∨ s

p ∨ q

p ∨ r

r

r ∨ s

q ∨ r ∨ s q ∨ s

r ∨ s

The leaves are input clauses from F ∧ G .

Every clause is a consequence of F ∧ G .

The root node ⊥ shows that F ∧ G is unsat.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 407 / 442



Interpolants for Intermediate Clauses

Key Idea: Compute interpolants for an intermediate clause C :
Split C into CF and CG (if literal appears in F and G put it in CG ).

The conflict clause follows from the original formula:

F ∧ G ⇒ CF ∨ CG

Hence, the following formula is unsatisfiable.

F ∧ ¬CF ∧ G ∧ ¬CG

An interpolant IC for C is the interpolant of the above formula. IC
contains only symbols shared between F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 408 / 442



McMillan’s algorithm

Color literals occuring only in F red and all others blue.

⊥

r

p ∨ r

q ∨ r

q ∨ s q ∨ r ∨ s

p ∨ q

p ∨ r

r

r ∨ s

q ∨ r ∨ s q ∨ s

r ∨ s

Compute interpolants for the leaves.
Then, for every resolution step compute interpolant as

`F ∧ C1 : I1 `F ∧ C2 : I2

C1 ∧ C2 : I1 ∨ I2

`G ∧ C1 : I1 `G ∧ C2 : I2

C1 ∧ C2 : I1 ∧ I2

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 409 / 442



Computing Interpolants for Leafs

Clause comes from F .
Then F ⇒ CF ∨ CG .
Hence, (F ∧ ¬CF ) ⇒ CG . Also, CG ∧ G ∧ ¬CG is unsatisfiable
Interpolant is CG .
Clause comes from G .
Then CG = C , G ⇒ CG .
Hence, (G ∧ ¬CG ) is unsatisfiable. Interpolant is >.
Clause is generated by TConflict.
Then theory must give an interpolant.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 410 / 442



Example: McMillan’s algorithm

Interpolation for resolution rule:

`F ∧ C1 : I1 `F ∧ C2 : I2

C1 ∧ C2 : I1 ∨ I2

`G ∧ C1 : I1 `G ∧ C2 : I2

C1 ∧ C2 : I1 ∧ I2

Interpolation Example:

⊥ : q ∨ r

r : q ∨ r

p, r : q

q, r :>

q, s :> q, r , s :>

p, q : q

p, r : r

r :>

r , s :>

q, r , s :> q, s :>

r , s :>

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 411 / 442


	Craig Interpolation

