Decision Procedures

Jochen Hoenicke

กั Software Engineering
$-\frac{\text { 品 }}{\text { 른 }}$
Albert-Ludwigs-University Freiburg

Winter Term 2019/2020

Craig Interpolation

Interpolation

A decision procedure for satisfiability has two possible outcomes:

- satisfiable, model: valuation for uninterpreted symbols
- unsatisfiable, with proof

Is there something simpler than a proof?

Introduction

Given an unsatisfiable conjunction of two formulas:
$F \wedge G$ is unsatisfiable,
i.e.,

$$
F \Rightarrow \neg G
$$

Can we find a "small" formula that explains this?
A formula implied by F that implies $\neg G$?
Under certain conditions, there is an interpolant I with

- $F \Rightarrow I$.
- $I \Rightarrow \neg G$, i. e., $I \wedge G$ is unsatisfiable.
- I contains only symbols common to F and G.

Craig Interpolation

A Craig interpolant / for an unsatisfiable formula $F \wedge G$ is a formula s.t.

- $F \Rightarrow I$.
- $I \wedge G$ is unsatisfiable.
- I contains only symbols common to F and G.

Craig interpolants exists in many theories and fragments:

- First-order logic.
- Quantifier-free FOL.
- Quantifier-free fragment of T_{E}.
- Quantifier-free fragment of $T_{\mathbb{Q}}$.
- Quantifier-free fragment of $\widehat{T_{\mathbb{Z}}}$ (augmented with divisibility).
- Quantifier-free fragment of $\widehat{T_{\mathrm{A}}}$ (augmented with difference). However, QF fragment of $T_{\mathbb{Z}}$ does not allow Craig interpolation.

Motivation: Program correctness

Consider this path through LinearSearch:

Single Static Assingment (SSA) replaces assignments by assumes:

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& i:=\ell \\
& \text { assume } i \leq u \\
& \text { assume } a[i] \neq e \\
& i:=i+1 \\
& \text { assume } i \leq u \\
& \text { @ } 0 \leq i \wedge i<|a|
\end{aligned}
$$

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& \text { assume } i_{1}=\ell \\
& \text { assume } i_{1} \leq u \\
& \text { assume } a\left[i_{1}\right] \neq e \\
& \text { assume } i_{2}=i_{1}+1 \\
& \text { assume } i_{2} \leq u \\
& \text { @ } 0 \leq i_{2} \wedge i_{2}<|a|
\end{aligned}
$$

Program correctness and Interpolants

The program contains only assumes. Therefore, the VC is

$$
V C: P \rightarrow\left(F_{1} \rightarrow\left(F_{2} \rightarrow\left(F_{3} \rightarrow \ldots\left(F_{n} \rightarrow Q\right) \ldots\right)\right)\right)
$$

Using $\neg(F \rightarrow G) \Leftrightarrow F \wedge \neg G$ compute negation:

$$
\neg V C: P \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge \cdots \wedge F_{n} \wedge \neg Q
$$

If verification condition is valid $\neg V C$ is unsatisfiable. We can compute interpolants for any program point, e.g. for

$$
P \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge \cdots \wedge F_{n} \wedge \neg Q
$$

Verification Condition and Interpolants

Consider the path through LinearSearch:

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& \text { assume } i_{1}=\ell \\
& \text { assume } i_{1} \leq u \\
& \text { assume } a\left[i_{1}\right] \neq e \\
& \text { assume } i_{2}=i_{1}+1 \\
& \text { assume } i_{2} \leq u \\
& \text { @ } 0 \leq i_{2} \wedge i_{2}<|a|
\end{aligned}
$$

The negated VC is unsatisfiable: 缓

$$
\begin{aligned}
& 0 \leq \ell \wedge u<|a| \wedge i_{1}=\ell \\
& \wedge i_{1} \leq u \wedge a\left[i_{1}\right] \neq e \wedge i_{2}=i_{1}+1 \\
& \wedge i_{2} \leq u \wedge\left(0>i_{2} \vee i_{2} \geq|a|\right)
\end{aligned}
$$

The interpolant I for the red and blue part is

$$
i_{1} \geq 0 \wedge u<|a|
$$

This is actually the loop invariant needed to prove the assertion.

Computing Interpolants

Given an unsatisfiable conjunction $F_{1} \wedge F_{n} \wedge G_{1} \wedge G_{n}$.
How can we compute an interpolant?
Answer: it depends on the theory fragment.

We will show an algorithm for

- Quantifier-free conjunctive fragment of T_{E}.
- Quantifier-free conjunctive fragment of $T_{\mathbb{Q}}$.

Computing Interpolants for T_{E}

$$
F_{1} \wedge \cdots \wedge F_{n} \wedge G_{1} \wedge \cdots \wedge G_{n} \text { is unsat }
$$

Let us first consider the case without function symbols. The congruence closure algorithm returns unsat. Hence,

- there is a disequality $v \neq w$ and
- v, w are connected by equality or congruence edges.

Example

$$
v \neq w \wedge x=y \wedge y=z \wedge z=u \wedge w=s \wedge t=z \wedge s=t \wedge v=x
$$

Disequality: $v \neq w$ Equality chain:

$$
v=x \wedge x=y \wedge y=z \wedge z=t \wedge t=s \wedge s=w
$$

The interpolant "summarizes" the red edges: $I: v \neq s \wedge x=t$

Edges in Congruence Closure Graph

Problem: Congruence closure graph draws edges between representatives instead of the equal terms. This makes finding the paths harder.

Solution: Change merge algorithm:

- Make one of the terms the representative by inverting edges to root
- Draw outgoing edge from the new representative directly to the equal term
Every term still has only one outgoing equality edge.

Computing Interpolants for T_{E}

Given conjunctive formula:

$$
F_{1} \wedge \cdots \wedge F_{n} \wedge G_{1} \wedge \cdots \wedge G_{m}
$$

The following algorithm can be used:

- Build the congruence closure graph.
- Find the disequality $s \neq t$ that contradicts equalities.
- Find the path from s to t in the equality graph and add a disequality edge from s to t to close circle.
- For each congruence, find the path between the arguments.
- Color edges from F_{i} red, and edges from G_{j} blue. Color congruence red if it connects two terms from $F_{1} \ldots F_{n}$.
- Remove all blue paths.
- Summarize each of the remaining red components.
- Interpolant is the conjunction of summaries.

Summarize Components

A sequence of equalities is summarized by a single equality between end points:

$$
x=y=z=t \text { has summary } x=t
$$

If a sequence contains the single disequality, the summary is a disequality

$$
s=w \neq v \text { has summary } s \neq v
$$

If the whole cycle is in A, the summary is \perp.

$$
s=w \neq v=x=y=z=t=s \text { has summary } \perp
$$

Summarizing Congruence Edges (Case 1)

Case 1: The congruence edge is colored red.

- For each argument path with a gap, add a disequality between the endpoints (where the gap is).
- Summarize the component as if the congruence was an equality.
- The summary is the disjunction of the above formulas.

$$
f\left(i_{1}\right)=x \wedge f\left(i_{4}\right)=y \wedge i_{1}=i_{2} \wedge i_{3}=i_{4} \wedge i_{3}=i_{2} \wedge x \neq y
$$

Summary:
$i_{2} \neq i_{3} \vee x=y$

Handling Congruence Edges (Case 2)

Case 2: The congruence edge is not colored red.

- For each argument, find the endpoint of the corresponding path.
- Apply the function to the end point and connect with a red edge.
- Summarize as usual, ignoring the partial argument paths.

$$
f\left(i_{1}\right)=x \wedge i_{2}=i_{1} \wedge i_{3}=i_{2} \wedge f\left(i_{3}\right) \neq x
$$

Summary: $x=f\left(i_{2}\right)$.

Example

$$
\begin{aligned}
& F: f(g(x))=y \wedge x \neq y \\
& G: x=f(z) \wedge x=f(g(f(z)))
\end{aligned}
$$

Example

$$
\begin{aligned}
& F: y=x \wedge x \neq f(g(y)) \wedge f(x)=W \\
& G: X=W \wedge X=Z(Z)=X
\end{aligned}
$$

Computing Interpolants for $T_{\mathbb{Q}}$

First apply Dutertre/de Moura algorithm.

- Non-basic variables x_{1}, \ldots, x_{n}.
- Basic variables y_{1}, \ldots, y_{m}.
- $y_{i}=\sum a_{i j} x_{j}$
- Conjunctive formula

$$
y_{1} \leq b_{1} \ldots y_{m^{\prime}} \leq b_{m^{\prime}} \wedge y_{m^{\prime}+1} \leq b_{m^{\prime}+1} \ldots y_{m} \leq b_{m}
$$

The algorithm returns unsatisfiable if and only if there is a line:

	x	\cdots	x	y	\cdots	y	y	\cdots	y
\vdots									
y_{i} / y_{i}	0	\cdots	0	-10	\cdots	$-/ 0$	$-/ 0$	\cdots	$-/ 0$
\vdots									
$y_{i}=\sum-c_{k} y_{k}, c_{k} \geq 0$ and $\sum-c_{k} b_{k}>b_{i}$									
(the constraint $y_{i} \leq b_{i}$ is not satisfied)									

Computing Interpolants for $T_{\mathbb{Q}}$

The conflict is:

$$
b_{i} \geq y_{i}=\sum-c_{k} y_{k} \geq \sum-c_{k} b_{k}>b_{i}
$$

or

$$
0=y_{i}+\sum c_{k} y_{k} \leq b_{i}+\sum c_{k} b_{k}<0
$$

We split the y variables into blue and red ones:

$$
0=\sum_{k=1}^{m^{\prime}} c_{k} y_{k}+\sum_{k=m^{\prime}+1}^{m} c_{k} y_{k} \leq \sum_{k=1}^{m^{\prime}} c_{k} b_{k}+\sum_{k=m^{\prime}+1}^{m} c_{k} b_{k}<0
$$

where $c_{k} \geq 0,\left(c_{i}=1\right)$. The interpolant I is the red part:

$$
\sum_{k=1}^{m^{\prime}} c_{k} y_{k} \leq \sum_{k=1}^{m^{\prime}} c_{k} b_{k}
$$

where the basic variables y_{k} are replaced by their definition.

Example

$$
\begin{aligned}
& x_{1}+x_{2} \leq 3 \wedge x_{1}-x_{2} \leq 1 \wedge x_{3}-x_{1} \leq 1 \wedge x_{3} \geq 4 \\
& y_{1}:=x_{1}+x_{2} \quad b_{1}:=3 \quad y_{3}:=-x_{1}+x_{3} \quad b_{3}:=1 \\
& y_{2}:=x_{1}-x_{2} \quad b_{1}:=1 \quad y_{4}:=-x_{3} \quad b_{4}:=-4
\end{aligned}
$$

Algorithm ends with the tableau

	1	1	-4	
	y_{2}	y_{3}	y_{4}	β
y_{1}	-1	-2	-2	5
x_{1}	0	-1	-1	3
x_{2}	-1	-1	-1	2
x_{3}	0	0	-1	4

Conflict is $0=y_{1}+y_{2}+2 y_{3}+2 y_{4} \leq 3+1+2-8=-2$. Interpolant is: $y_{1}+y_{2} \leq 3+1$ or (substituting non-basic vars): $2 x_{1} \leq 4$.

Correctness

$F_{k}: y_{k}:=\sum_{j=0}^{n} a_{k j} x_{j} \leq b_{k},(k=1, \ldots, m) \quad G_{k}: y_{k}:=\sum_{j=0}^{n} a_{k j} x_{j} \leq b_{k},\left(k=m^{\prime}, \ldots, m\right)$
Conflict is $0=\sum_{k=1}^{m^{\prime}} c_{k} y_{k}+\sum_{k=m^{\prime}+1}^{m} c_{k} y_{k} \leq \sum_{k=1}^{m^{\prime}} c_{k} b_{k}+\sum_{k=m^{\prime}+1}^{m} c_{k} b_{k}<0$
After substitution the red part $\sum_{k=1}^{m^{\prime}} c_{k} y_{k} \leq \sum_{k=1}^{m^{\prime}} c_{k} b_{k}$ becomes

$$
\text { I: } \sum_{j=1}^{n}\left(\sum_{k=1}^{m^{\prime}} c_{k} a_{k j}\right) x_{j} \leq \sum_{k=1}^{m^{\prime}} c_{k} b_{k}
$$

- $F \Rightarrow I$ (sum up the inequalities in F with factors c_{k}).
- $I \wedge G \Rightarrow \perp$ (sum up I and G with factors c_{k} to get $0 \leq \sum_{k=1}^{m} c_{k} b_{k}<0$).
- Only shared symbols in I: $0=\sum_{k=1}^{m^{\prime}} a_{k j} c_{k} x_{j}+\sum_{k=m^{\prime}+1}^{m} a_{k j} c_{k} x_{j}$.

If the left sum is not zero, the right sum is not zero and x_{j} appears in F and G.

Interpolation and DPLL

Given the input:

$$
\begin{aligned}
& F:(p \vee r) \wedge(\bar{p} \vee q) \\
& G:(\bar{q} \vee r \vee s) \wedge(\bar{r} \vee s) \wedge(\bar{q} \vee \bar{s}) \wedge(q \vee \bar{r} \vee \bar{s})
\end{aligned}
$$

$\langle\epsilon, F \wedge G, T\rangle \xrightarrow{\text { Decide }}\left\langle r^{\square}, F \wedge G, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle r^{\square} s^{\bar{r} \vee s}, F \wedge G, T\right\rangle \xrightarrow{\text { Propagate }}$ $\left\langle r^{\square} s^{\bar{r} V s} \bar{q}^{\bar{q} V \bar{s}}, F \wedge G, T\right\rangle \xrightarrow{\text { Conflict }}\left\langle r^{\square} s^{\bar{r} \vee s} \bar{q}^{\bar{q} V \bar{s}}, F \wedge G, q \vee \bar{r} \vee \bar{s}\right\rangle \xrightarrow{\text { Explain }}$ $\left\langle r^{\square} s^{\bar{r} V s} \bar{q}^{\bar{q} \vee \bar{s}}, F \wedge G, \bar{r} \vee \bar{s}\right\rangle \xrightarrow{\text { Explain }}\left\langle r^{\square} s^{\bar{r} V s} \bar{q}^{\bar{q} V \bar{s}}, F \wedge G, \bar{r}\right\rangle \xrightarrow{\text { Learn }}$ $\left\langle r^{\square} s^{\bar{r} \vee s} \bar{q} \bar{q} \vee \bar{s}, F \wedge G \wedge \bar{r}, \bar{r}\right\rangle \xrightarrow{\text { Back }}\langle\bar{r} \bar{r}, F \wedge G \wedge \bar{r}, T\rangle \xrightarrow{\text { Propagate }}$ $\left\langle\bar{r}^{\bar{r}} p^{p \vee r}, F \wedge G \wedge \bar{r}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle\bar{r}^{\bar{r}} p^{p \vee r} q^{\bar{p} \vee q}, F \wedge G \wedge \bar{r}, T\right\rangle \xrightarrow{\text { Propagate }}$ $\left\langle\bar{r}^{\bar{r}} p^{p \vee r} q^{\bar{p} \vee q} s^{\bar{q} \vee r \vee s}, F \wedge G \wedge \bar{r}, \top\right\rangle \xrightarrow{\text { Conflict }}\left\langle\bar{r}^{\bar{r}} p^{p \vee r} q^{\bar{p} \vee q} s^{\bar{q} \vee r \vee s}, F \wedge G \wedge\right.$ $\bar{r}, \bar{q} \vee \bar{s}\rangle \xrightarrow{\text { Explain }}\left\langle\bar{r}^{\bar{r}} p^{p \vee r} q^{\bar{p} \vee q_{s} \bar{q} \vee r \vee s}, F \wedge G \wedge \bar{r}, \bar{q} \vee r\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle\bar{r}^{\bar{r}} p^{p \vee r} q^{\bar{p} \vee q} s^{\bar{q} \vee r \vee s}, F \wedge G \wedge \bar{r}, \bar{p} \vee r\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle\bar{r}^{\bar{r}} p^{p \vee r} q^{\bar{p} \vee q} s^{\bar{q} \vee r \vee s}, F \wedge G \wedge \bar{r}, r\right\rangle \xrightarrow{\text { Explain }}\left\langle\bar{r}^{\bar{r}} p^{p \vee r} q^{\bar{p} \vee q} s^{\bar{q} \vee r \vee s}, F \wedge G \wedge \bar{r}, \perp\right\rangle$

Computing Interpolants for DPLL(T)

Every explain step is a resolution step

$$
\frac{\ell \vee C_{1} \quad \bar{\ell} \vee C_{2}}{C_{1} \vee C_{2}}
$$

These can be put together to a proof tree:
$\bar{q} \vee \bar{s} \bar{q} \vee r \vee s$

- The leaves are input clauses from $F \wedge G$.
- Every clause is a consequence of $F \wedge G$.
- The root node \perp shows that $F \wedge G$ is unsat.

Interpolants for Intermediate Clauses

Key Idea: Compute interpolants for an intermediate clause C : Split C into C_{F} and C_{G} (if literal appears in F and G put it in C_{G}).

The conflict clause follows from the original formula:

$$
F \wedge G \Rightarrow C_{F} \vee C_{G}
$$

Hence, the following formula is unsatisfiable.

$$
F \wedge \neg C_{F} \wedge G \wedge \neg C_{G}
$$

An interpolant I_{C} for C is the interpolant of the above formula. I_{C} contains only symbols shared between F and G.

McMillan's algorithm

Color literals occuring only in F red and all others blue.

Compute interpolants for the leaves.
Then, for every resolution step compute interpolant as

$$
\frac{\bar{\ell}_{F} \wedge \overline{C_{1}}: I_{1} \quad \ell_{F} \wedge \overline{C_{2}}: I_{2}}{\overline{C_{1}} \wedge \overline{C_{2}}: I_{1} \vee I_{2}} \quad \frac{\bar{\ell}_{G} \wedge \overline{C_{1}}: I_{1} \quad \ell_{G} \wedge \overline{C_{2}}: I_{2}}{\overline{C_{1}} \wedge \overline{C_{2}}: I_{1} \wedge I_{2}}
$$

Computing Interpolants for Leafs

- Clause comes from F. Then $F \Rightarrow C_{F} \vee C_{G}$. Hence, $\left(F \wedge \neg C_{F}\right) \Rightarrow C_{G}$. Also, $C_{G} \wedge G \wedge \neg C_{G}$ is unsatisfiable Interpolant is C_{G}.
- Clause comes from G. Then $C_{G}=C, G \Rightarrow C_{G}$. Hence, $\left(G \wedge \neg C_{G}\right)$ is unsatisfiable. Interpolant is T.
- Clause is generated by TConflict.

Then theory must give an interpolant.

Example: McMillan's algorithm

Interpolation for resolution rule:

$$
\frac{\bar{\ell}_{F} \wedge \overline{C_{1}}: I_{1}}{\overline{C_{1}} \wedge \overline{C_{2}}: \ell_{F} \wedge \overline{C_{2}}: I_{2}} \quad \frac{\bar{\ell}_{G} \wedge \overline{C_{1}}: I_{1}}{\overline{C_{1}} \wedge \overline{C_{2}}: I_{G} \wedge I_{2}}
$$

Interpolation Example:

$$
\begin{aligned}
& \bar{q}, \bar{s}: \top \bar{q}, r, s: \top
\end{aligned}
$$

