Decision Procedures

Jochen Hoenicke

กั Software Engineering
$-\frac{\text { 品 }}{\text { 른 }}$
Albert-Ludwigs-University Freiburg

Winter Term 2019/2020

Nelson-Oppen Theory Combination

Combining Decision Procedures: Nelson-Oppen Method

Motivation: How do we show that

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable?

Given

Multiple Theories T_{i} over signatures Σ_{i}
(constants, functions, predicates)
with corresponding decision procedures P_{i} for T_{i}-satisfiability.

Goal

Decide satisfiability of a sentence in theory $\cup_{i} T_{i}$.

Nelson-Oppen Combination Method (N-O Method)

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

Σ_{1}-theory T_{1}
P_{1} for T_{1}-satisfiability of quantifier-free Σ_{1}-formulae

P for $\left(T_{1} \cup T_{2}\right)$-satisfiability of quantifier-free $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formulae

We show how to get Procedure P from Procedures P_{1} and P_{2}.

Nelson-Oppen: Limitations

Given formula F in theory $T_{1} \cup T_{2}$.
(1) F must be quantifier-free.
(2) Signatures Σ_{i} of the combined theory only share $=$, i.e.,

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

(3) Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_{i} - combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula - otherwise convert to DNF and check each disjunct.

Stably Infinite Theories

Problem: The T_{1} / T_{2}-interpretations must have the same data domain; it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)
A Σ-theory T is stably infinite iff for every quantifier-free Σ-formula F :
if F is T-satisfiable
then there exists some infinite T-interpretation that satisfies F with infinite cardinality.

Example: Stably Infinite

- $T_{\mathbb{Z}}$: stably infinite (all T-interpretations are infinite).
- $T_{\mathbb{Q}}$: stably infinite (all T-interpretations are infinite).
- T_{E} : stably infinite (one can add infinitely many fresh and distinct values).
- Σ-theory T with $\Sigma:\{a, b,=\}$ and axiom $\forall x . x=a \vee x=b$: not stable infinite, since every T-interpretation has at most two elements.

Example: Σ_{E} and $\Sigma_{\mathbb{Z}}$

Consider quantifier-free conjunctive $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

The signatures of T_{E} and $T_{\mathbb{Z}}$ only share $=$. Also, both theories are stably infinite. Hence, the NO combination of the decision procedures for T_{E} and $T_{\mathbb{Z}}$ decides the $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-satisfiability of F.
F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable:
The first two literals imply $x=1 \vee x=2$ so that $f(x)=f(1) \vee f(x)=f(2)$. This contradicts last two literals.

N-O Overview

Phase 1: Variable Abstraction

- Given conjunction Γ in theory $T_{1} \cup T_{2}$.
- Convert to conjunction $\Gamma_{1} \cup \Gamma_{2}$ s.t.
- Γ_{i} in theory T_{i}
- $\Gamma_{1} \cup \Gamma_{2}$ satisfiable iff Γ satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of Γ_{1} and Γ_{2} shared $\left(\Gamma_{1}, \Gamma_{2}\right)=$ free $\left(\Gamma_{1}\right) \cap$ free $\left(\Gamma_{2}\right)$ s.t. $S \cup \Gamma_{i}$ are T_{i}-satisfiable for all i, then Γ is satisfiable.
- Otherwise, unsatisfiable.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F.
Two versions:

- nondeterministic - simple to present, but high complexity
- deterministic - efficient

Nelson-Oppen ($\mathrm{N}-\mathrm{O}$) method proceeds in two steps:

- Phase 1 (variable abstraction)
- same for both versions
- Phase 2
nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Phase 1: Variable abstraction

Given quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F. Transform F into two quantifier-free conjunctive formulae

$$
\Sigma_{1} \text {-formula } F_{1} \quad \text { and } \quad \Sigma_{2} \text {-formula } F_{2}
$$

s.t. F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff $F_{1} \wedge F_{2}$ is $\left(T_{1} \cup T_{2}\right)$-satisfiable F_{1} and F_{2} are linked via a set of shared variables.

For term t, let $h d(t)$ be the root symbol, e.g. $h d(f(x))=f$.

Generation of F_{1} and F_{2}

For $i, j \in\{1,2\}$ and $i \neq j$, repeat the transformations
(1) if function $f \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
F\left[f\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \quad \text { eqsat. } \quad F\left[f\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(2) if predicate $p \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F\left[p\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \quad \text { eqsat. } \quad F\left[p\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(3) if $h d(s) \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F[s=t] \quad \text { eqsat. } \quad F[\top] \wedge w=s \wedge w=t
$$

(1) if $h d(s) \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F[s \neq t] \quad \text { eqsat. } \quad F\left[w_{1} \neq w_{2}\right] \wedge w_{1}=s \wedge w_{2}=t
$$

where w, w_{1}, and w_{2} are fresh variables.

Example: Phase 1

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

According to transformation 1 , since $f \in \Sigma_{E}$ and $1 \in \Sigma_{\mathbb{Z}}$, replace $f(1)$ by $f\left(w_{1}\right)$ and add $w_{1}=1$. Similarly, replace $f(2)$ by $f\left(w_{2}\right)$ and add $w_{2}=2$. Now, the literals

$$
\Gamma_{\mathbb{Z}}:\left\{1 \leq x, x \leq 2, w_{1}=1, w_{2}=2\right\}
$$

are $T_{\mathbb{Z}}$-literals, while the literals

$$
\Gamma_{E}:\left\{f(x) \neq f\left(w_{1}\right), f(x) \neq f\left(w_{2}\right)\right\}
$$

are T_{E}-literals. Hence, construct the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{1}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
$$

and the Σ_{E}-formula

$$
F_{2}: \quad f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) .
$$

F_{1} and F_{2} share the variables $\left\{x, w_{1}, w_{2}\right\}$. $F_{1} \wedge F_{2}$ is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-equisatisfiable to F.

Example: Phase 1

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula
$F: f(x)=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge f(x) \neq f(2)$.
In the first literal, $\operatorname{hd}(f(x))=f \in \Sigma_{\mathrm{E}}$ and $\operatorname{hd}(x+y)=+\in \Sigma_{\mathbb{Z}}$; thus, by (3), replace the literal with

$$
w_{1}=f(x) \wedge w_{1}=x+y
$$

In the final literal, $f \in \Sigma_{E}$ but $2 \in \Sigma_{\mathbb{Z}}$, so by (1), replace it with

$$
f(x) \neq f\left(w_{2}\right) \wedge w_{2}=2
$$

Now, separating the literals results in two formulae:

$$
F_{1}: w_{1}=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge w_{2}=2
$$

is a $\Sigma_{\mathbb{Z}^{-}}$-formula, and

$$
F_{2}: \quad w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)
$$

is a $\Sigma_{E-f o r m u l a . ~}$
The conjunction $F_{1} \wedge F_{2}$ is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-equisatisfiable to F.

Phase 2: Guess and Check (Nondeterministic)

- Phase 1 separated $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F into two formulae:
Σ_{1}-formula F_{1} and Σ_{2}-formula F_{2}
- F_{1} and F_{2} are linked by a set of shared variables:
$V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\operatorname{free}\left(F_{1}\right) \cap \operatorname{free}\left(F_{2}\right)$
- Let E be an equivalence relation over V.
- The arrangement $\alpha(V, E)$ of V induced by E is:

$$
\alpha(V, E): \bigwedge_{u, v \in V . u E v} u=v \wedge \bigwedge_{u, v \in V . \neg(u E v)}
$$

Correctness of Phase 2

Lemma

The original formula F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff there exists an equivalence relation E of V s.t.
(1) $F_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable, and
(2) $F_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable.

Proof:

\Rightarrow If F is $\left(T_{1} \cup T_{2}\right)$-satisfiable, then $F_{1} \wedge F_{2}$ is $\left(T_{1} \cup T_{2}\right)$-satisfiable, hence there is a $T_{1} \cup T_{2}$-Interpretation I with $I \models F_{1} \wedge F_{2}$.

Define $E \subseteq V \times V$ with $u E v$ iff $I \models u=v$.
Then E is a equivalence relation.
By definition of E and $\alpha(V, E), I \models \alpha(V, E)$.
Hence $I \models F_{1} \wedge \alpha(V, E)$ and $I \models F_{2} \wedge \alpha(V, E)$.
Thus, these formulae are T_{1} - and T_{2}-satisfiable, respectively.
\Leftarrow Let I_{1} and I_{2} be T_{1} - and T_{2}-interpretations, respectively, with

$$
I_{1} \models F_{1} \wedge \alpha(V, E) \text { and } I_{2} \models F_{2} \wedge \alpha(V, E)
$$

W.I.o.g. assume that $\alpha_{l_{1}}[=](v, w)$ iff $v=w$ iff $\alpha_{l_{2}}[=](v, w)$. (Otherwise, replace $D_{l_{i}}$ with $D_{l_{i}} / \alpha_{l_{i}}[=]$)
Since T_{1} and T_{2} are stably infinite, we can assume that $D_{l_{1}}$ and $D_{l_{2}}$ are of the same cardinality.
Since $I_{1} \models \alpha(V, E)$ and $I_{2} \models \alpha(V, E)$, for $x, y \in V$:

$$
\alpha_{l_{1}}[x]=\alpha_{l_{1}}[y] \text { iff } \alpha_{l_{2}}[x]=\alpha_{l_{2}}[y] .
$$

Construct bijective function $g: D_{l_{1}} \rightarrow D_{l_{2}}$ with $g\left(\alpha_{l_{1}}[x]\right)=\alpha_{l_{2}}[x]$ for all $x \in V$. Define I as follows: $D_{I}=D_{l_{2}}$,
$\alpha_{l}[x]=\alpha_{l_{2}}[x]\left(=g\left(\alpha_{l_{1}}[x]\right)\right)$ for $x \in V$,
$\alpha_{l}[=](v, w)$ iff $v=w$,
$\alpha_{l}\left[f_{2}\right]=\alpha_{l_{2}}\left[f_{2}\right]$ for $f_{2} \in \Sigma_{2}$,
$\alpha_{l}\left[f_{1}\right]\left(v_{1}, \ldots, v_{n}\right)=g\left(\alpha_{1_{1}}\left[f_{1}\right]\left(g^{-1}\left(v_{1}\right), \ldots, g^{-1}\left(v_{n}\right)\right)\right)$ for $f_{1} \in \Sigma_{1}$.
Then I is a $T_{1} \cup T_{2}$-interpretation, and satisfies $F_{1} \wedge F_{2}$. Hence F is $T_{1} \cup T_{2}$-satisfiable.

Example: Phase 2

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

Phase 1 separates this formula into the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{1}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
$$

and the $\Sigma_{E-f o r m u l a}$

$$
F_{2}: f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)
$$

with

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\left\{x, w_{1}, w_{2}\right\}
$$

There are 5 equivalence relations to consider, which we list by stating the partitions:

Example: Phase 2 (cont)

(1) $\left\{\left\{x, w_{1}, w_{2}\right\}\right\}$, i.e., $x=w_{1}=w_{2}$:
$x=w_{1}$ and $f(x) \neq f\left(w_{1}\right) \Rightarrow F_{2} \wedge \alpha(V, E)$ is T_{E}-unsatisfiable.
(2) $\left\{\left\{x, w_{1}\right\},\left\{w_{2}\right\}\right\}$, i.e., $x=w_{1}, x \neq w_{2}$: $x=w_{1}$ and $f(x) \neq f\left(w_{1}\right) \Rightarrow F_{2} \wedge \alpha(V, E)$ is T_{E}-unsatisfiable.
(3) $\left\{\left\{x, w_{2}\right\},\left\{w_{1}\right\}\right\}$, i.e., $x=w_{2}, x \neq w_{1}$: $x=w_{2}$ and $f(x) \neq f\left(w_{2}\right) \Rightarrow F_{2} \wedge \alpha(V, E)$ is T_{E}-unsatisfiable.
(9) $\left\{\{x\},\left\{w_{1}, w_{2}\right\}\right\}$, i.e., $x \neq w_{1}, w_{1}=w_{2}$:
$w_{1}=w_{2}$ and $w_{1}=1 \wedge w_{2}=2$
$\Rightarrow F_{1} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-unsatisfiable.
(3) $\left\{\{x\},\left\{w_{1}\right\},\left\{w_{2}\right\}\right\}$, i.e., $x \neq w_{1}, x \neq w_{2}, w_{1} \neq w_{2}$:
$x \neq w_{1} \wedge x \neq w_{2}$ and $x=w_{1}=1 \vee x=w_{2}=2$
(since $1 \leq x \leq 2$ implies that $x=1 \vee x=2$ in $T_{\mathbb{Z}}$)
$\Rightarrow F_{1} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-unsatisfiable.
Hence, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.

Example: Phase 2 (cont)

Consider the $\left(\Sigma_{\text {cons }} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: \operatorname{car}(x)+\operatorname{car}(y)=z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)
$$

After two applications of (1), Phase 1 separates F into the $\Sigma_{\text {cons- }}$-formula

$$
F_{1}: w_{1}=\operatorname{car}(x) \wedge w_{2}=\operatorname{car}(y) \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)
$$

and the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{2}: w_{1}+w_{2}=z
$$

with

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\left\{z, w_{1}, w_{2}\right\}
$$

Consider the equivalence relation E given by the partition

$$
\left\{\{z\},\left\{w_{1}\right\},\left\{w_{2}\right\}\right\} .
$$

The arrangement

$$
\alpha(V, E): \quad z \neq w_{1} \wedge z \neq w_{2} \wedge w_{1} \neq w_{2}
$$

satisfies both F_{1} and F_{2} : $F_{1} \wedge \alpha(V, E)$ is $T_{\text {cons }}$-satisfiable, and
$F_{2} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-satisfiable.
Hence, F is ($T_{\text {cons }} \cup T_{\mathbb{Z}}$)-satisfiable.

Practical Efficiency

Phase 2 was formulated as "guess and check":
First, guess an equivalence relation E, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the \# of shared variables. It is given by Bell numbers.
e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version

Deterministic Version

Phase 1 as before
Phase 2 asks the decision procedures P_{1} and P_{2} to propagate new equalities.
Example 1:

Real linear arithmethic $T_{\mathbb{R}}$

$P_{\mathbb{R}}$
Theory of equality T_{E}

P_{E}

$$
F: \quad f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

Phase 1: Variable Abstraction

$$
F: f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

$$
f(x) \Rightarrow u \quad f(y) \Rightarrow v \quad u-v \Rightarrow w
$$

$$
\Gamma_{E}: \quad\{f(w) \neq f(z), u=f(x), v=f(y)\} \quad \ldots T_{E} \text {-formula }
$$

$$
\Gamma_{\mathbb{R}}: \quad\{x \leq y, y+z \leq x, 0 \leq z, w=u-v\} \quad \ldots T_{\mathbb{R}} \text {-formula }
$$

$$
\operatorname{shared}\left(\Gamma_{\mathbb{R}}, \Gamma_{E}\right)=\{x, y, z, u, v, w\}
$$

Nondeterministic version — over 200 Es!
Let's try the deterministic version.

Phase 2: Equality Propagation

$P_{\mathbb{R}}$

$$
s_{0}:\left\langle\Gamma_{\mathbb{R}}, \Gamma_{E},\{ \}\right\rangle
$$

$\Gamma_{\mathbb{R}} \models x=y$

$$
\Gamma_{E} \cup\{x=y\} \models u=v
$$

$$
s_{2}:\left\langle\Gamma_{\mathbb{R}}, \Gamma_{E},\{x=y, u=v\}\right\rangle
$$

$\Gamma_{\mathbb{R}} \cup\{u=v\} \vDash z=w$

$$
\begin{aligned}
& s_{3}:\left\langle\Gamma_{\mathbb{R}}, \Gamma_{E},\{x=y, u=v, z=w\}\right\rangle \\
& \Gamma_{E} \cup\{z=w\} \models \text { false }
\end{aligned}
$$

s_{4} : false

Contradiction. Thus, F is $\left(T_{\mathbb{R}} \cup T_{E}\right)$-unsatisfiable.
If there were no contradiction, F would be $\left(T_{\mathbb{R}} \cup T_{E}\right)$-satisfiable.

Convex Theories

Definition (convex theory)

A Σ-theory T is convex iff
for every quantifier-free conjunction Σ-formula F
and for every disjunction $\bigvee\left(u_{i}=v_{i}\right)$
$i=1$

$$
\begin{aligned}
& \text { if } F \models \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right) \\
& \text { then } F \stackrel{\models}{\models} u_{i}=v_{i}, \text { for some } i \in\{1, \ldots, n\}
\end{aligned}
$$

Claim

Equality propagation is a decision procedure for convex theories.

Convex Theories

- $T_{E}, T_{\mathbb{R}}, T_{\mathbb{Q}}, T_{\text {cons }}$ are convex
- $T_{\mathbb{Z}}, T_{\mathrm{A}}$ are not convex

Example: $T_{\mathbb{Z}}$ is not convex
Consider quantifier-free conjunctive

$$
F: \quad 1 \leq z \wedge z \leq 2 \wedge u=1 \wedge v=2
$$

Then

$$
F \vDash z=u \vee z=v
$$

but

$$
\begin{aligned}
& F \not \vDash z=u \\
& F \not \vDash z=v
\end{aligned}
$$

Example:

The theory of arrays T_{A} is not convex.
Consider the quantifier-free conjunctive Σ_{A}-formula

$$
F: \quad a\langle i \triangleleft v\rangle[j]=v .
$$

Then

$$
F \Rightarrow i=j \vee a[j]=v,
$$

but

$$
\begin{aligned}
& F \nRightarrow i=j \\
& F \nRightarrow a[j]=v .
\end{aligned}
$$

What if T is Not Convex?

Case split when:

$$
\Gamma \models \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right)
$$

but

$$
\Gamma \not \vDash u_{i}=v_{i} \quad \text { for all } i=1, \ldots, n
$$

- For each $i=1, \ldots, n$, construct a branch on which $u_{i}=v_{i}$ is assumed.
- If all branches are contradictory, then unsatisfiable. Otherwise, satisfiable.

Example 2: Non-Convex Theory

$T_{\mathbb{Z}}$ not convex!
T_{E} convex

$$
\Gamma:\left\{\begin{array}{ll}
1 \leq x, & x \leq 2, \\
f(x) \neq f(1), & f(x) \neq f(2)
\end{array}\right\} \quad \text { in } T_{\mathbb{Z}} \cup T_{E}
$$

- Replace $f(1)$ by $f\left(w_{1}\right)$, and add $w_{1}=1$.
- Replace $f(2)$ by $f\left(w_{2}\right)$, and add $w_{2}=2$.

Result:

$$
\Gamma_{\mathbb{Z}}=\left\{\begin{array}{l}
1 \leq x, \\
x \leq 2, \\
w_{1}=1, \\
w_{2}=2
\end{array}\right\} \quad \text { and } \quad \Gamma_{E}=\left\{\begin{array}{l}
f(x) \neq f\left(w_{1}\right), \\
f(x) \neq f\left(w_{2}\right)
\end{array}\right\}
$$

$\operatorname{shared}\left(\Gamma_{\mathbb{Z}}, \Gamma_{E}\right)=\left\{x, w_{1}, w_{2}\right\}$

Example 2: Non-Convex Theory

$s_{1}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{1}\right\}\right\rangle$
$s_{3}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{2}\right\}\right\rangle$
$\Gamma_{E} \cup\left\{x=w_{1}\right\} \models \perp$
$\Gamma_{E} \cup\left\{x=w_{2}\right\} \models \perp$

All leaves are labeled with $\perp \Rightarrow \Gamma$ is $\left(T_{\mathbb{Z}} \cup T_{E}\right)$-unsatisfiable.

Example 3: Non-Convex Theory

$$
\Gamma:\left\{\begin{array}{c}
1 \leq x, x \leq 3, \\
f(x) \neq f(1), f(x) \neq f(3), f(1) \neq f(2)
\end{array}\right\} \quad \text { in } T_{\mathbb{Z}} \cup T_{E}
$$

- Replace $f(1)$ by $f\left(w_{1}\right)$, and add $w_{1}=1$.
- Replace $f(2)$ by $f\left(w_{2}\right)$, and add $w_{2}=2$.
- Replace $f(3)$ by $f\left(w_{3}\right)$, and add $w_{3}=3$.

Result:

$$
\Gamma_{\mathbb{Z}}=\left\{\begin{array}{l}
1 \leq x, \\
x \leq 3, \\
w_{1}=1, \\
w_{2}=2, \\
w_{3}=3
\end{array}\right\} \quad \text { and } \quad \Gamma_{E}=\left\{\begin{array}{l}
f(x) \neq f\left(w_{1}\right), \\
f(x) \neq f\left(w_{3}\right) \\
f\left(w_{1}\right) \neq f\left(w_{2}\right)
\end{array}\right\}
$$

$$
\operatorname{shared}\left(\Gamma_{\mathbb{Z}}, \Gamma_{E}\right)=\left\{x, w_{1}, w_{2}, w_{3}\right\}
$$

Example 3: Non-Convex Theory

$$
\begin{gathered}
s_{1}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{1}\right\}\right\rangle s_{3}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{2}\right\}\right\rangle s_{4}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{3}\right\}\right\rangle \\
\Gamma_{E} \cup\left\{x=w_{1}\right\} \models \perp \\
\Gamma_{E} \cup\left\{x=w_{3}\right\} \models \perp \\
s_{2}: \perp
\end{gathered}
$$

No more equations on middle leaf $\Rightarrow \Gamma$ is $\left(T_{\mathbb{Z}} \cup T_{E}\right)$-satisfiable.

