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Foundations: Propositional Logic



Syntax of Propositional Logic

Atom truth symbols >(“true”) and ⊥(“false”)

propositional variables P,Q,R,P1,Q1,R1, · · ·
Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F ,F1,F2

¬F “not” (negation)
(F1 ∧ F2) “and” (conjunction)
(F1 ∨ F2) “or” (disjunction)
(F1 → F2) “implies” (implication)
(F1 ↔ F2) “if and only if” (iff)
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Example: Syntax

formula F : ((P ∧ Q) → (> ∨ ¬Q))
atoms: P,Q,>
literal: ¬Q
subformulas: (P ∧ Q), (> ∨ ¬Q)

Parentheses can be omitted: F : P ∧ Q → > ∨ ¬Q

¬ binds stronger than

∧ binds stronger than

∨ binds stronger than

→,↔.
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Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1
where 0 corresponds to value false

1 true

Interpretation I : {P 7→ 1,Q 7→ 0, · · · }

Evaluation of logical operators:

F1 F2 ¬F1 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0
1

0 0 1 1
0 1 0 1 1 0

1 0
0

0 1 0 0
1 1 1 1 1 1
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Example: Semantics

F : P ∧ Q → P ∨ ¬Q
I : {P 7→ 1,Q 7→ 0}

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I
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Inductive Definition of PL’s Semantics

I |= F if F evaluates to 1 / true under I
I 6|= F 0 / false

Base Case:
I |= >
I 6|= ⊥
I |= P iff I [P] = 1
I 6|= P iff I [P] = 0

Inductive Case:
I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff, I |= F1 and I |= F2,
or I 6|= F1 and I 6|= F2
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Example: Inductive Reasoning

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ 1, Q 7→ 0}

1. I |= P since I [P] = 1
2. I 6|= Q since I [Q] = 0
3. I |= ¬Q by 2, ¬
4. I 6|= P ∧ Q by 2, ∧
5. I |= P ∨ ¬Q by 1, ∨
6. I |= F by 4, → Why?

Thus, F is true under I .
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Remark: Functional Programming

Formulas can be embedded in functional languages, e.g.

datatype fml = Var of int | False | True | Not of fml
| And of fml ∗ fml | Or of fml ∗ fml | Impl of fml ∗ fml
| Iff of fml ∗ fml

The evaluation operator |= can be implemented by a recursive function:

let rec eval (I : int → bool) (F : fml) =
match F with

| Var x → (I x)
| True → true

| False → false

| Not F 1 → (not (eval I F 1))
| And F 1 F 2 → (eval I F 1) & (eval I F 2)
| Or F 1 F 2 → (eval I F 1) | (eval I F 2)
| Impl F 1 F 2 → (not (eval I F 1)) | (eval I F 2)
| Iff F 1 F 2 → (eval I (Impl F 1 F 2)) & (eval I (Impl F 2 F 1))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 20 / 376



Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Proof.

F is valid iff ∀I : I |= F iff ¬∃I : I 6|= F iff ¬F is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.
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Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

F1 : P ∧ Q
satisfiable, not valid

F2 : ¬(P ∧ Q)
satisfiable, not valid

F3 : P ∨ ¬P
satisfiable, valid

F4 : ¬(P ∨ ¬P)
unsatisfiable, not valid

F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?
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Decision Procedure

We will present three Decision Procedures for propositional logic

Truth Tables

Semantic Argument

DPLL/CDCL
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Method 1: Truth Tables

F : P ∧ Q → P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1

1 0 0 1 1 1
1 1 1 0 1 1

Thus F is valid.

F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F
0 0 0 0 1 ← satisfying I
0 1 1 0 0 ← falsifying I
1 0 1 0 0
1 1 1 1 1

Thus F is satisfiable, but invalid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 24 / 376



Method 2: Semantic Argument

Assume F is not valid and I a falsifying interpretation: I 6|= F

Apply proof rules.

If no contradiction reached and no more rules applicable, F is invalid.

If in every branch of proof a contradiction reached, F is valid.
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Semantic Argument: Proof rules

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F
I 6|= F

I |= ⊥

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F
I |= G

| I 6|= F
I 6|= G

I 6|= F ↔ G

I |= F
I 6|= G

| I 6|= F
I |= G
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Example

Prove F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption
2. I |= P ∧ Q 1, Rule →
3. I 6|= P ∨ ¬Q 1, Rule →
4. I |= P 2, Rule ∧
5. I 6|= P 3, Rule ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.
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Example 2

Prove F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption
2. I |= (P → Q) ∧ (Q → R) 1, Rule →
3. I 6|= P → R 1, Rule →
4. I |= P 3, Rule →
5. I 6|= R 3, Rule →
6. I |= P → Q 2, Rule ∧
7. I |= Q → R 2, Rule ∧

8a. I 6|= P
9a. I |= ⊥

∣∣∣∣∣∣
8b. I |= Q 6 →

9ba. I 6|= Q
10ba. I |= ⊥

∣∣∣∣ 9bb. I |= R
10bb. I |= ⊥

Our assumption is incorrect in all cases — F is valid.
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Example 3

Is F : P ∨ Q → P ∧ Q valid?

Let’s assume that F is not valid.

1. I 6|= P ∨ Q → P ∧ Q assumption
2. I |= P ∨ Q 1 and →
3. I 6|= P ∧ Q 1 and →

4a. I |= P 2 and ∨
5aa. I 6|= P
6aa. I |= ⊥

∣∣∣∣ 5ab. I 6|= Q

∣∣∣∣∣∣
4b. I |= Q 2 and ∨

5ba. I 6|= P
∣∣∣∣ 5bb. I 6|= Q

6bb. I |= ⊥

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation:
I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}
We have to derive a contradiction in all cases for F to be valid.
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Method 3: DPLL/CDCL

DPLL/CDCL is a efficient decision procedure for propositional logic.
History:

1960s: Davis, Putnam, Logemann, and Loveland presented DPLL.

1990s: Conflict Driven Clause Learning (CDCL).

Today, very efficient solvers using specialized data structures and
improved heuristics.

DPLL/CDCL doesn’t work on arbitrary formulas, but only on a certain
normal form.
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Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first.
Convert it into a simpler normal form, e.g.:

Negation Normal Form: No→ and no↔; negation only before atoms.

Conjunctive Normal Form: Negation normal form, where conjunction
is outside, disjunction is inside.

Disjunctive Normal Form: Negation normal form, where disjunction is
outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.
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Equivalence

F1 and F2 are equivalent (F1 ⇔ F2)

iff for all interpretations I , I |= F1 ↔ F2

To prove F1 ⇔ F2 show F1 ↔ F2 is valid.

F1 implies F2 (F1 ⇒ F2)

iff for all interpretations I , I |= F1 → F2

F1 ⇔ F2 and F1 ⇒ F2 are not formulae!
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Equivalence is a Congruence relation

If F1 ⇔ F ′1 and F2 ⇔ F ′2, then

¬F1 ⇔ ¬F ′1
F1 ∨ F2 ⇔ F ′1 ∨ F ′2
F1 ∧ F2 ⇔ F ′1 ∧ F ′2
F1 → F2 ⇔ F ′1 → F ′2
F1 ↔ F2 ⇔ F ′1 ↔ F ′2

if we replace in a formula F a subformula F1 by F ′1 and obtain F ′,
then F ⇔ F ′.
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Negation Normal Form (NNF)

Negations appear only in literals. (only ¬,∧,∨)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 34 / 376



Example: Negation Normal Form

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into NNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬¬Q2 ∨ R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2)

The last formula is equivalent to F and is in NNF.
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Is this a (deterministic) algorithm?

static finiteness: Can the algorithm be described in finite space?

dynamic finiteness: Does the algorithm use finite space?

termination: Does the algorithm run in finite time?

deterministic: the order of steps determined?

deterministic result: is the result always the same?

termination: Yes, but not obvious.
deterministic: No
deterministic result: Yes (not obvious)
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NNF in ML

let rec nnf (F : fml) =
match F with

| Not True → False | Not False → True
| Not (Not F 1) → nnf F 1
| Not (And F 1 F 2) → Or (nnf (Not F 1)) (nnf (Not F 2))
| Not (Or F 1 F 2) → And (nnf (Not F 1)) (nnf (Not F 2))
| Not (Impl F 1 F 2) → And (nnf F 1) (nnf (Not F 2))
| Not (Iff F 1 F 2) → Or (And (nnf F 1) (nnf (Not F 2)))

(And (nnf (Not F 1)) (nnf F 2))
| And F 1 F 2 → And (nnf F 1) (nnf F 2)
| Or F 1 F 2 → Or (nnf F 1) (nnf F 2)
| Impl F 1 F 2 → Or (nnf (Not F 1)) (nnf F 2)
| Iff F 1 F 2 → And (Or (nnf (Not F 1)) (nnf F 2))

(Or (nnf F 1) (nnf (Not F 2)))
| → F
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Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals∨
i

∧
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

}
dist
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Example

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into DNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2) in NNF
⇔ (Q1 ∧ (Q2 ∨ R2)) ∨ (R1 ∧ (Q2 ∨ R2)) dist
⇔ (Q1 ∧ Q2) ∨ (Q1 ∧ R2) ∨ (R1 ∧ Q2) ∨ (R1 ∧ R2) dist

The last formula is equivalent to F and is in DNF. Note that formulas can
grow exponentially.
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Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

A disjunction of literals P1 ∨ P2 ∨ ¬P3 is called a clause.
For brevity we write it as set: {P1,P2,P3}.
A formula in CNF is a set of clauses (a set of sets of literals).
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Equisatisfiability

Definition (Equisatisfiability)

F and F ′ are equisatisfiable, iff

F is satisfiable if and only if F ′ is satisfiable

Every formula is equisatifiable to either > or ⊥.
There is a efficient conversion of F to F ′ where

F ′ is in CNF and

F and F ′ are equisatisfiable

Note: efficient means polynomial in the size of F .
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Conversion to equisatisfiable CNF

Basic Idea:

Introduce a new variable PG for every subformula G ;
unless G is already an atom.

For each subformula G : G1 ◦ G2 produce a small formula
PG ↔ PG1 ◦ PG2 .

encode each of these (small) formulae separately to CNF.

The formula
PF ∧

∧
G

CNF (PG ↔ PG1 ◦ PG2)

is equisatisfiable to F .
The number of subformulae is linear in the size of F .
The time to convert one small formula is constant!
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Example: CNF

Convert F : P ∨ Q → P ∧ ¬R to CNF.
Introduce new variables: PF , PP∨Q , PP∧¬R , P¬R . Create new formulae
and convert them to CNF separately:

PF ↔ (PP∨Q → PP∧¬R) in CNF:

F1 : {{PF ,PP∨Q ,PP∧¬R}, {PF ,PP∨Q}, {PF ,PP∧¬R}}

PP∨Q ↔ P ∨ Q in CNF:

F2 : {{PP∨Q ,P ∨ Q}, {PP∨Q ,P}, {PP∨Q ,Q}}

PP∧¬R ↔ P ∧ P¬R in CNF:

F3 : {{PP∧¬R ∨ P}, {PP∧¬R ,P¬R}, {PP∧¬R ,P,P¬R}}

P¬R ↔ ¬R in CNF: F4 : {{P¬R ,R}, {P¬R ,R}}
{{PF}} ∪ F1 ∪ F2 ∪ F3 ∪ F4 is in CNF and equisatisfiable to F .
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Algorithm to decide PL formulae in CNF.

Published by Davis, Logemann, Loveland (1962).

Often miscited as Davis, Putnam (1960), which describes a different
algorithm.
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec dpll F =
let F ′ = prop F in

let F ′′ = plp F ′ in

if F ′′ = > then true

else if F ′′ = ⊥ then false

else

let P = choose vars(F ′′) in

(dpll F ′′{P 7→ >}) ∨ (dpll F ′′{P 7→ ⊥})
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Unit Propagagion

Unit Propagation (prop)

If a clause contains one literal `,

Set ` to >.

Remove all clauses containing `.

Remove ¬` in all clauses.

Based on resolution

` ¬` ∨ C ← clause
C
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Pure Literal Propagagion

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to >.
If P occurs only negative set it to ⊥.
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

Branching on Q

F{Q 7→ >} : (R) ∧ (¬R) ∧ (P ∨ ¬R)

By unit resolution
R (¬R)

⊥
F{Q 7→ >} = ⊥ ⇒ false

On the other branch
F{Q 7→ ⊥} : (¬P ∨ R)
F{Q 7→ ⊥, R 7→ >, P 7→ ⊥} = > ⇒ true

F is satisfiable with satisfying interpretation

I : {P 7→ false, Q 7→ false, R 7→ true}
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

R (¬R)

⊥ ¬P

I : {P 7→ false, Q 7→ false, R 7→ true}

Q 7→ > Q 7→ ⊥

R 7→ >

P 7→ ⊥
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Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the
truth, and knaves always lie. You meet four inhabitants: Alice, Bob,
Charles and Doris.

Alice says that Doris is a knave.

Bob tells you that Alice is a knave.

Charles claims that Alice is a knave.

Doris tells you, ‘Of Charles and Bob, exactly one is a knight.’
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Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

A ↔ ¬D

B ↔ ¬A

C ↔ ¬A

D ↔ ¬(C ↔ B)

In CNF:

{A,D}, {A,D}
{B,A}, {B,A}
{C ,A}, {C ,A}
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}
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Solving Knights and Knaves

F : {{A,D}, {A,D}, {B,A}, {B,A}, {C ,A}, {C ,A},
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

prop and plp are not applicable. Decide on A:

F{A 7→ ⊥} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ ⊥,D 7→ >,B 7→ >,C 7→ >} : ⊥

Unsatisfiable! Now set A to >:

F{A 7→ >} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ >,D 7→ ⊥,B 7→ ⊥,C 7→ ⊥} : >

Satisfying assignment!
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Learning is Useful

Consider the following problem:

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

For some literal orderings, we need exponentially many steps.
Note, that

{{Ai ,Bi}, {Pi−1,Ai ,Pi}, {Pi−1,Bi ,Pi}} ⇒ {{Pi−1,Pi}}

If we learn the right clauses, unit propagation will immediately give
unsatisfiable.
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Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables).
When you assign true to a literal `,also assign false to `.
For a partial assignment

A clause is true if one of its literals is assigned true.

A clause is a conflict clause if all its literals are assigned false.

A clause is a unit clause if all but one literals are assigned false and
the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a
unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!
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Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and
learn it!

If a conflict is found we remember the conflict clause.

If variable in conflict was derived by unit propagation
use the resolution rule to generate a new conflict clause.

` ∨ C1 ¬` ∨ C2

C1 ∨ C2
(resolution rule)

If variable in conflict was derived by decision,
use learned conflict as unit clause
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DPLL with Learning (CDCL)

We describe DPLL a set of rules modifying a configuration.
A configuration is a triple

〈M,F ,C 〉 ,

where

M (model) is a sequence of literals (that are currently set to true)
annotated with � for decisions or a clause for unit propagation.

F (formula) is a formula in CNF,
i. e., a set of clauses where each clause is a set of literals.

C (conflict) is either > or a conflict clause (a set of literals).
A conflict clause C is a clause with F ⇒ C and M 6|= C .
Thus, a conflict clause shows M 6|= F .
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Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of
transitions between configurations, e. g.,

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , `C` in M,
and C` = {`1, . . . , `k , `}.

Here, `C` in M means that the literal ` occurs in M annotated with the
clause C`.

Example: for C1 = {P1},C2 = {P3,P4}, M = PC1
1 P3

�
P2

�
P4

C2 ,
F = {C1,C2}, and C = {P2} the transition

〈M,F , {P2,P4}〉 −→ 〈M,F , {P2,P3}〉

is possible.
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Rules for CDCL (Conflict Driven Clause Learning)

Decide
〈M,F ,>〉
〈M · `�,F ,>〉

where ` ∈ lit(F ), `, ` 6in M

Propagate
〈M,F ,>〉

〈M · `C` ,F ,>〉
where C` = {`1, . . . , `k , `} ∈ F

with `1, . . . , `k in M, `, ` 6in M.

Conflict
〈M,F ,>〉

〈M,F , {`1, . . . , `k}〉
where {`1, . . . , `k} ∈ F

and `1, . . . , `k in M.

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , `C` in M,
and C` = {`1, . . . , `k , `}.

Learn
〈M,F ,C 〉

〈M,F ∪ {C},C 〉
where C 6= >, C /∈ F .

Back
〈M,F ,C`〉

〈M ′ · `C` ,F ,>〉

where C` = {`1, . . . , `k , `} ∈ F ,
M = M ′ · `′� · · · ,
and `1, . . . , `k in M ′, ` 6in M ′.
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Running DPLL with Learning

A run of DPLL is a maximal sequence of configurations

〈M0,F0,C0〉 → 〈M1,F1,C1〉 → . . .

starting with M0 = ε, F the input formula in CNF, and C0 = >, and
where each transition follows one of the six rules.
If the run ends with ∅ ∈ F , the formula is unsatisfiable. Otherwise it is
satisfiable and the last M gives an interpretation for the input formula F .
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Example: Knights and Knaves

F = {C1,C2,C3,C4,C5,C6,C7,C8,C9,C10} with C1 = {A,D},
C2 = {A,D},C3 = {B,A},C4 = {B,A},C5 = {C ,A},C6 = {C ,A},
C7 = {D,C ,B},C8 = {D,C ,B},C9 = {D,C ,B},C10 = {D,C ,B}.

〈ε,F ,>〉 Decide−→ 〈A�
,F ,>〉 Propagate−→ 〈A�

DC2 ,F ,>〉 Propagate−→
〈A�

DC2BC4 ,F ,>〉 Propagate−→ 〈A�
DC2BC4CC6 ,F ,>〉 Conflict−→

〈A�
DC2BC4CC6 ,F , {D,C ,B}〉 Explain−→

〈A�
DC2BC4CC6 ,F , {A,D,B}〉 Explain−→ 〈A�

DC2BC4CC6 ,F , {A,B}〉 Explain−→
〈A�

DC2BC4CC6 ,F , {A}〉 Learn−→ 〈A�
DC2BC4CC6 ,F ′, {A}〉 Back−→

〈A{A},F ′,>〉 Propagate−→ 〈A{A}DC1 ,F ′,>〉 Propagate−→
〈A{A}DC1B

C3 ,F ′,>〉 Propagate−→ 〈A{A}DC1B
C3C

C5 ,F ′,>〉

where F ′ = F ∪ {A}.
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Example: DPLL with Learning

P1∧ (¬P2∨P3)∧ (¬P4∨P3)∧ (P2∨P4)∧ (¬P1∨¬P4∨¬P3)∧ (P4∨¬P3)

F = {C1,C2,C3,C4,C5,C6} with C1 = {P1}, C2 = {P2,P3},
C3 = {P4,P3}, C4 = {P2,P4}, C5 = {P1,P4,P3}, C6 = {P4,P3}.

〈ε,F ,>〉 Propagate−→ 〈PC1
1 ,F ,>〉 Decide−→ 〈PC1

1 P2
�
,F ,>〉 Propagate−→

〈PC1
1 P2

�
PC4

4 ,F ,>〉 Propagate−→ 〈PC1
1 P2

�
PC4

4 PC3
3 ,F ,>〉 Conflict−→

〈PC1
1 P2

�
PC4

4 PC3
3 ,F , {P1,P4,P3}〉

Explain−→
〈PC1

1 P2
�

PC4
4 PC3

3 ,F , {P1,P4}〉
Learn−→ 〈PC1

1 P2
�

PC4
4 PC3

3 ,F ′, {P1,P4}〉
Back−→

〈PC1
1 P4

C7 ,F ′,>〉 Propagate−→ 〈PC1
1 P4

C7PC4
2 ,F ′,>〉 Propagate−→

〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′,>〉 Conflict−→ 〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′, {P4,P3}〉
Explain−→

〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′, {P4,P2}〉
Explain−→ 〈PC1

1 P4
C7PC4

2 PC2
3 ,F ′, {P4}〉

Explain−→
〈PC1

1 P4
C7PC4

2 PC2
3 ,F ′, {P1}〉

Explain−→ 〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′, ∅〉 Learn−→
〈PC1

1 P4
C7PC4

2 PC2
3 ,F ′ ∪ {∅}, ∅〉 where C7 = {P1,P4}, F ′ = F ∪ {C7}.
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Correctness of DPLL (with Learning)

Theorem (Correctness of DPLL)

Let F be a Σ-formula and F ′ its propositional core. Let

〈ε,F ′,>〉 = 〈M0,F0,C0〉 −→ . . . −→ 〈Mn,Fn,Cn〉

be a maximal sequence of rule application of DPLL.

Then F is satisfiable iff Cn is >.

Before proving the theorem, we note some important invariants:

Mi never contains a literal more than once.
Mi never contains ` and `.
If Mi = M ′`C` · · · , then C` = {`1, . . . , `k , `} with `1, . . . , `k in M ′

and C` ∈ Fi .
Every ` ∈ Ci occurs negated in Mi .
Ci is always implied by Fi .
F is equivalent to Fi for all steps i of the computation.
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Correctness proof

Proof: If the sequence ends with 〈Mn,Fn,>〉 and there is no rule
applicable, then:

Since Decide is not applicable, all literals of Fn appear in Mn either
positively or negatively.

Since Conflict is not applicable, for each clause at least one literal
appears in Mn positively.

Thus, Mn is a model for Fn, which is equivalent to F .

If the sequence ends with 〈Mn,Fn,Cn〉 with Cn 6= >.
Assume Cn = {`1, . . . , `k , `} 6= ∅. Note that `1, . . . , `k , ` in M.
W.l.o.g., ` is the last one that occurs in M. Then:

Since Learn is not applicable, Cn ∈ Fn.

Since Explain is not applicable ` must be annotated with �.

However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and Cn = ∅ (= ⊥).
Since F implies Cn, F is not satisfiable.
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Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence

〈ε,F ,>〉 = 〈M0,F0,C0〉 −→ 〈M1,F1,C1〉 −→ . . .

terminates.
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Proof of Termination

There are finitely many literals, therefore,

finitely many clauses C ,
finitely many sequences M of literals annotated with clauses
finitely many sets of clauses F .

Since everything is finite, it is sufficient to show that there is no cycle, by
defining a partial ordering.

We define M ≺ M ′ if M$ comes lexicographically before M ′$, where
`C is smaller than `′� and $ is considered to be the largest symbol.
Example: `C1

1 `C2
2 $ ≺ `C1

1 `�3 `
C4
4 $ ≺ `C1

1 `�3 $ ≺ `C1
1 $

For a sequence M = `1 . . . `n, the conflict clauses are ordered by their
weight w : w(>) = 2n+1, w(C ) =

∑
`i∈C 2i , w(∅) = 0.

The weight depends on the order in which the literals occur in M.
Example: ∅ ≺`1`2`3

{`1, `2} ≺`1`2`3
{`3} ≺`1`2`3

{`2, `3} ≺`1`2`3
>

These are well-orderings, because the domains are finite.
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Proof of Termination (cont.)

Termination Proof: Every rule application decreases the value of
〈Mi ,Fi ,Ci 〉 according to the well-ordering:

〈M,F ,C 〉 ≺ 〈M ′,F ′,C ′〉, iff


M ≺ M ′,

or M = M ′,C ≺M C ′,

or M = M ′,C = C ′,F ) F ′.

Hence there is no cycle and the DPLL algorithm terminates.
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Example

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

Unit propagation sets P0 and Pn to true.

Decide, e.g. A1, then propagate P1

Continue until An−1, then propagate Pn−1,An and Bn

Conflict: {An,Bn}.
Explain computes new conflict clause: {Pn−1,Pn}.
Conflict clause does not depend on A1, . . . ,An−1 and can be used
again.
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DPLL (without Learning)
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DPLL with CDCL
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Some Notes about DPLL with Learning

Pure Literal Propagation is unnecessary:
A pure literal is always chosen right and never causes a conflict.

Modern SAT-solvers use this procedure but differ in

heuristics to choose literals/clauses.
efficient data structures to find unit clauses.
better conflict resolution to minimize learned clauses.
restarts (without forgetting learned clauses).

Even with the optimal heuristics DPLL is still exponential:
The Pidgeon-Hole problem requires exponential resolution proofs.
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Summary

Syntax and Semantics of Propositional Logic

Methods to decide satisfiability/validity of formulae:

Truth table
Semantic Argument
DPLL

Run-time of all presented algorithms is worst-case exponential in
length of formula.

Deciding satisfiability is NP-complete.
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