
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Winter Term 2019/2020

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 1 / 376

Foundations: Propositional Logic

Syntax of Propositional Logic

Atom truth symbols >(“true”) and ⊥(“false”)

propositional variables P,Q,R,P1,Q1,R1, · · ·
Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F ,F1,F2

¬F “not” (negation)
(F1 ∧ F2) “and” (conjunction)
(F1 ∨ F2) “or” (disjunction)
(F1 → F2) “implies” (implication)
(F1 ↔ F2) “if and only if” (iff)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 14 / 376

Example: Syntax

formula F : ((P ∧ Q) → (> ∨ ¬Q))
atoms: P,Q,>
literal: ¬Q
subformulas: (P ∧ Q), (> ∨ ¬Q)

Parentheses can be omitted: F : P ∧ Q → > ∨ ¬Q

¬ binds stronger than

∧ binds stronger than

∨ binds stronger than

→,↔.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 15 / 376

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1
where 0 corresponds to value false

1 true

Interpretation I : {P 7→ 1,Q 7→ 0, · · · }

Evaluation of logical operators:

F1 F2 ¬F1 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0
1

0 0 1 1
0 1 0 1 1 0

1 0
0

0 1 0 0
1 1 1 1 1 1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 16 / 376

Example: Semantics

F : P ∧ Q → P ∨ ¬Q
I : {P 7→ 1,Q 7→ 0}

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 17 / 376

Inductive Definition of PL’s Semantics

I |= F if F evaluates to 1 / true under I
I 6|= F 0 / false

Base Case:
I |= >
I 6|= ⊥
I |= P iff I [P] = 1
I 6|= P iff I [P] = 0

Inductive Case:
I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff, I |= F1 and I |= F2,
or I 6|= F1 and I 6|= F2

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 18 / 376

Example: Inductive Reasoning

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ 1, Q 7→ 0}

1. I |= P since I [P] = 1
2. I 6|= Q since I [Q] = 0
3. I |= ¬Q by 2, ¬
4. I 6|= P ∧ Q by 2, ∧
5. I |= P ∨ ¬Q by 1, ∨
6. I |= F by 4, → Why?

Thus, F is true under I .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 19 / 376

Remark: Functional Programming

Formulas can be embedded in functional languages, e.g.

datatype fml = Var of int | False | True | Not of fml
| And of fml ∗ fml | Or of fml ∗ fml | Impl of fml ∗ fml
| Iff of fml ∗ fml

The evaluation operator |= can be implemented by a recursive function:

let rec eval (I : int → bool) (F : fml) =
match F with

| Var x → (I x)
| True → true

| False → false

| Not F 1 → (not (eval I F 1))
| And F 1 F 2 → (eval I F 1) & (eval I F 2)
| Or F 1 F 2 → (eval I F 1) | (eval I F 2)
| Impl F 1 F 2 → (not (eval I F 1)) | (eval I F 2)
| Iff F 1 F 2 → (eval I (Impl F 1 F 2)) & (eval I (Impl F 2 F 1))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 20 / 376

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Proof.

F is valid iff ∀I : I |= F iff ¬∃I : I 6|= F iff ¬F is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 21 / 376

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

F1 : P ∧ Q
satisfiable, not valid

F2 : ¬(P ∧ Q)
satisfiable, not valid

F3 : P ∨ ¬P
satisfiable, valid

F4 : ¬(P ∨ ¬P)
unsatisfiable, not valid

F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 22 / 376

Decision Procedure

We will present three Decision Procedures for propositional logic

Truth Tables

Semantic Argument

DPLL/CDCL

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 23 / 376

Method 1: Truth Tables

F : P ∧ Q → P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1

1 0 0 1 1 1
1 1 1 0 1 1

Thus F is valid.

F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F
0 0 0 0 1 ← satisfying I
0 1 1 0 0 ← falsifying I
1 0 1 0 0
1 1 1 1 1

Thus F is satisfiable, but invalid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 24 / 376

Method 2: Semantic Argument

Assume F is not valid and I a falsifying interpretation: I 6|= F

Apply proof rules.

If no contradiction reached and no more rules applicable, F is invalid.

If in every branch of proof a contradiction reached, F is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 25 / 376

Semantic Argument: Proof rules

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F
I 6|= F

I |= ⊥

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F
I |= G

| I 6|= F
I 6|= G

I 6|= F ↔ G

I |= F
I 6|= G

| I 6|= F
I |= G

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 26 / 376

Example

Prove F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption
2. I |= P ∧ Q 1, Rule →
3. I 6|= P ∨ ¬Q 1, Rule →
4. I |= P 2, Rule ∧
5. I 6|= P 3, Rule ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 27 / 376

Example 2

Prove F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption
2. I |= (P → Q) ∧ (Q → R) 1, Rule →
3. I 6|= P → R 1, Rule →
4. I |= P 3, Rule →
5. I 6|= R 3, Rule →
6. I |= P → Q 2, Rule ∧
7. I |= Q → R 2, Rule ∧

8a. I 6|= P
9a. I |= ⊥

∣∣∣∣∣∣
8b. I |= Q 6 →

9ba. I 6|= Q
10ba. I |= ⊥

∣∣∣∣ 9bb. I |= R
10bb. I |= ⊥

Our assumption is incorrect in all cases — F is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 28 / 376

Example 3

Is F : P ∨ Q → P ∧ Q valid?

Let’s assume that F is not valid.

1. I 6|= P ∨ Q → P ∧ Q assumption
2. I |= P ∨ Q 1 and →
3. I 6|= P ∧ Q 1 and →

4a. I |= P 2 and ∨
5aa. I 6|= P
6aa. I |= ⊥

∣∣∣∣ 5ab. I 6|= Q

∣∣∣∣∣∣
4b. I |= Q 2 and ∨

5ba. I 6|= P
∣∣∣∣ 5bb. I 6|= Q

6bb. I |= ⊥

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation:
I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}
We have to derive a contradiction in all cases for F to be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 29 / 376

Method 3: DPLL/CDCL

DPLL/CDCL is a efficient decision procedure for propositional logic.
History:

1960s: Davis, Putnam, Logemann, and Loveland presented DPLL.

1990s: Conflict Driven Clause Learning (CDCL).

Today, very efficient solvers using specialized data structures and
improved heuristics.

DPLL/CDCL doesn’t work on arbitrary formulas, but only on a certain
normal form.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 30 / 376

Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first.
Convert it into a simpler normal form, e.g.:

Negation Normal Form: No→ and no↔; negation only before atoms.

Conjunctive Normal Form: Negation normal form, where conjunction
is outside, disjunction is inside.

Disjunctive Normal Form: Negation normal form, where disjunction is
outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 31 / 376

Equivalence

F1 and F2 are equivalent (F1 ⇔ F2)

iff for all interpretations I , I |= F1 ↔ F2

To prove F1 ⇔ F2 show F1 ↔ F2 is valid.

F1 implies F2 (F1 ⇒ F2)

iff for all interpretations I , I |= F1 → F2

F1 ⇔ F2 and F1 ⇒ F2 are not formulae!

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 32 / 376

Equivalence is a Congruence relation

If F1 ⇔ F ′1 and F2 ⇔ F ′2, then

¬F1 ⇔ ¬F ′1
F1 ∨ F2 ⇔ F ′1 ∨ F ′2
F1 ∧ F2 ⇔ F ′1 ∧ F ′2
F1 → F2 ⇔ F ′1 → F ′2
F1 ↔ F2 ⇔ F ′1 ↔ F ′2

if we replace in a formula F a subformula F1 by F ′1 and obtain F ′,
then F ⇔ F ′.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 33 / 376

Negation Normal Form (NNF)

Negations appear only in literals. (only ¬,∧,∨)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 34 / 376

Example: Negation Normal Form

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into NNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬¬Q2 ∨ R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2)

The last formula is equivalent to F and is in NNF.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 35 / 376

Is this a (deterministic) algorithm?

static finiteness: Can the algorithm be described in finite space?

dynamic finiteness: Does the algorithm use finite space?

termination: Does the algorithm run in finite time?

deterministic: the order of steps determined?

deterministic result: is the result always the same?

termination: Yes, but not obvious.
deterministic: No
deterministic result: Yes (not obvious)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 36 / 376

NNF in ML

let rec nnf (F : fml) =
match F with

| Not True → False | Not False → True
| Not (Not F 1) → nnf F 1
| Not (And F 1 F 2) → Or (nnf (Not F 1)) (nnf (Not F 2))
| Not (Or F 1 F 2) → And (nnf (Not F 1)) (nnf (Not F 2))
| Not (Impl F 1 F 2) → And (nnf F 1) (nnf (Not F 2))
| Not (Iff F 1 F 2) → Or (And (nnf F 1) (nnf (Not F 2)))

(And (nnf (Not F 1)) (nnf F 2))
| And F 1 F 2 → And (nnf F 1) (nnf F 2)
| Or F 1 F 2 → Or (nnf F 1) (nnf F 2)
| Impl F 1 F 2 → Or (nnf (Not F 1)) (nnf F 2)
| Iff F 1 F 2 → And (Or (nnf (Not F 1)) (nnf F 2))

(Or (nnf F 1) (nnf (Not F 2)))
| → F

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 37 / 376

Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals∨
i

∧
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

}
dist

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 38 / 376

Example

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into DNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2) in NNF
⇔ (Q1 ∧ (Q2 ∨ R2)) ∨ (R1 ∧ (Q2 ∨ R2)) dist
⇔ (Q1 ∧ Q2) ∨ (Q1 ∧ R2) ∨ (R1 ∧ Q2) ∨ (R1 ∧ R2) dist

The last formula is equivalent to F and is in DNF. Note that formulas can
grow exponentially.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 39 / 376

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

A disjunction of literals P1 ∨ P2 ∨ ¬P3 is called a clause.
For brevity we write it as set: {P1,P2,P3}.
A formula in CNF is a set of clauses (a set of sets of literals).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 40 / 376

Equisatisfiability

Definition (Equisatisfiability)

F and F ′ are equisatisfiable, iff

F is satisfiable if and only if F ′ is satisfiable

Every formula is equisatifiable to either > or ⊥.
There is a efficient conversion of F to F ′ where

F ′ is in CNF and

F and F ′ are equisatisfiable

Note: efficient means polynomial in the size of F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 41 / 376

Conversion to equisatisfiable CNF

Basic Idea:

Introduce a new variable PG for every subformula G ;
unless G is already an atom.

For each subformula G : G1 ◦ G2 produce a small formula
PG ↔ PG1 ◦ PG2 .

encode each of these (small) formulae separately to CNF.

The formula
PF ∧

∧
G

CNF (PG ↔ PG1 ◦ PG2)

is equisatisfiable to F .
The number of subformulae is linear in the size of F .
The time to convert one small formula is constant!

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 42 / 376

Example: CNF

Convert F : P ∨ Q → P ∧ ¬R to CNF.
Introduce new variables: PF , PP∨Q , PP∧¬R , P¬R . Create new formulae
and convert them to CNF separately:

PF ↔ (PP∨Q → PP∧¬R) in CNF:

F1 : {{PF ,PP∨Q ,PP∧¬R}, {PF ,PP∨Q}, {PF ,PP∧¬R}}

PP∨Q ↔ P ∨ Q in CNF:

F2 : {{PP∨Q ,P ∨ Q}, {PP∨Q ,P}, {PP∨Q ,Q}}

PP∧¬R ↔ P ∧ P¬R in CNF:

F3 : {{PP∧¬R ∨ P}, {PP∧¬R ,P¬R}, {PP∧¬R ,P,P¬R}}

P¬R ↔ ¬R in CNF: F4 : {{P¬R ,R}, {P¬R ,R}}
{{PF}} ∪ F1 ∪ F2 ∪ F3 ∪ F4 is in CNF and equisatisfiable to F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 43 / 376

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Algorithm to decide PL formulae in CNF.

Published by Davis, Logemann, Loveland (1962).

Often miscited as Davis, Putnam (1960), which describes a different
algorithm.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 44 / 376

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec dpll F =
let F ′ = prop F in

let F ′′ = plp F ′ in

if F ′′ = > then true

else if F ′′ = ⊥ then false

else

let P = choose vars(F ′′) in

(dpll F ′′{P 7→ >}) ∨ (dpll F ′′{P 7→ ⊥})

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 45 / 376

Unit Propagagion

Unit Propagation (prop)

If a clause contains one literal `,

Set ` to >.

Remove all clauses containing `.

Remove ¬` in all clauses.

Based on resolution

` ¬` ∨ C ← clause
C

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 46 / 376

Pure Literal Propagagion

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to >.
If P occurs only negative set it to ⊥.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 47 / 376

Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

Branching on Q

F{Q 7→ >} : (R) ∧ (¬R) ∧ (P ∨ ¬R)

By unit resolution
R (¬R)

⊥
F{Q 7→ >} = ⊥ ⇒ false

On the other branch
F{Q 7→ ⊥} : (¬P ∨ R)
F{Q 7→ ⊥, R 7→ >, P 7→ ⊥} = > ⇒ true

F is satisfiable with satisfying interpretation

I : {P 7→ false, Q 7→ false, R 7→ true}

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 48 / 376

Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

R (¬R)

⊥ ¬P

I : {P 7→ false, Q 7→ false, R 7→ true}

Q 7→ > Q 7→ ⊥

R 7→ >

P 7→ ⊥

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 49 / 376

Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the
truth, and knaves always lie. You meet four inhabitants: Alice, Bob,
Charles and Doris.

Alice says that Doris is a knave.

Bob tells you that Alice is a knave.

Charles claims that Alice is a knave.

Doris tells you, ‘Of Charles and Bob, exactly one is a knight.’

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 50 / 376

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

A ↔ ¬D

B ↔ ¬A

C ↔ ¬A

D ↔ ¬(C ↔ B)

In CNF:

{A,D}, {A,D}
{B,A}, {B,A}
{C ,A}, {C ,A}
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 51 / 376

Solving Knights and Knaves

F : {{A,D}, {A,D}, {B,A}, {B,A}, {C ,A}, {C ,A},
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

prop and plp are not applicable. Decide on A:

F{A 7→ ⊥} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ ⊥,D 7→ >,B 7→ >,C 7→ >} : ⊥

Unsatisfiable! Now set A to >:

F{A 7→ >} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ >,D 7→ ⊥,B 7→ ⊥,C 7→ ⊥} : >

Satisfying assignment!
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 52 / 376

Learning is Useful

Consider the following problem:

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

For some literal orderings, we need exponentially many steps.
Note, that

{{Ai ,Bi}, {Pi−1,Ai ,Pi}, {Pi−1,Bi ,Pi}} ⇒ {{Pi−1,Pi}}

If we learn the right clauses, unit propagation will immediately give
unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 53 / 376

Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables).
When you assign true to a literal `,also assign false to `.
For a partial assignment

A clause is true if one of its literals is assigned true.

A clause is a conflict clause if all its literals are assigned false.

A clause is a unit clause if all but one literals are assigned false and
the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a
unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 54 / 376

Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and
learn it!

If a conflict is found we remember the conflict clause.

If variable in conflict was derived by unit propagation
use the resolution rule to generate a new conflict clause.

` ∨ C1 ¬` ∨ C2

C1 ∨ C2
(resolution rule)

If variable in conflict was derived by decision,
use learned conflict as unit clause

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 55 / 376

DPLL with Learning (CDCL)

We describe DPLL a set of rules modifying a configuration.
A configuration is a triple

〈M,F ,C 〉 ,

where

M (model) is a sequence of literals (that are currently set to true)
annotated with � for decisions or a clause for unit propagation.

F (formula) is a formula in CNF,
i. e., a set of clauses where each clause is a set of literals.

C (conflict) is either > or a conflict clause (a set of literals).
A conflict clause C is a clause with F ⇒ C and M 6|= C .
Thus, a conflict clause shows M 6|= F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 56 / 376

Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of
transitions between configurations, e. g.,

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , `C` in M,
and C` = {`1, . . . , `k , `}.

Here, `C` in M means that the literal ` occurs in M annotated with the
clause C`.

Example: for C1 = {P1},C2 = {P3,P4}, M = PC1
1 P3

�
P2

�
P4

C2 ,
F = {C1,C2}, and C = {P2} the transition

〈M,F , {P2,P4}〉 −→ 〈M,F , {P2,P3}〉

is possible.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 57 / 376

Rules for CDCL (Conflict Driven Clause Learning)

Decide
〈M,F ,>〉
〈M · `�,F ,>〉

where ` ∈ lit(F), `, ` 6in M

Propagate
〈M,F ,>〉

〈M · `C` ,F ,>〉
where C` = {`1, . . . , `k , `} ∈ F

with `1, . . . , `k in M, `, ` 6in M.

Conflict
〈M,F ,>〉

〈M,F , {`1, . . . , `k}〉
where {`1, . . . , `k} ∈ F

and `1, . . . , `k in M.

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , `C` in M,
and C` = {`1, . . . , `k , `}.

Learn
〈M,F ,C 〉

〈M,F ∪ {C},C 〉
where C 6= >, C /∈ F .

Back
〈M,F ,C`〉

〈M ′ · `C` ,F ,>〉

where C` = {`1, . . . , `k , `} ∈ F ,
M = M ′ · `′� · · · ,
and `1, . . . , `k in M ′, ` 6in M ′.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 58 / 376

Running DPLL with Learning

A run of DPLL is a maximal sequence of configurations

〈M0,F0,C0〉 → 〈M1,F1,C1〉 → . . .

starting with M0 = ε, F the input formula in CNF, and C0 = >, and
where each transition follows one of the six rules.
If the run ends with ∅ ∈ F , the formula is unsatisfiable. Otherwise it is
satisfiable and the last M gives an interpretation for the input formula F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 59 / 376

Example: Knights and Knaves

F = {C1,C2,C3,C4,C5,C6,C7,C8,C9,C10} with C1 = {A,D},
C2 = {A,D},C3 = {B,A},C4 = {B,A},C5 = {C ,A},C6 = {C ,A},
C7 = {D,C ,B},C8 = {D,C ,B},C9 = {D,C ,B},C10 = {D,C ,B}.

〈ε,F ,>〉 Decide−→ 〈A�
,F ,>〉 Propagate−→ 〈A�

DC2 ,F ,>〉 Propagate−→
〈A�

DC2BC4 ,F ,>〉 Propagate−→ 〈A�
DC2BC4CC6 ,F ,>〉 Conflict−→

〈A�
DC2BC4CC6 ,F , {D,C ,B}〉 Explain−→

〈A�
DC2BC4CC6 ,F , {A,D,B}〉 Explain−→ 〈A�

DC2BC4CC6 ,F , {A,B}〉 Explain−→
〈A�

DC2BC4CC6 ,F , {A}〉 Learn−→ 〈A�
DC2BC4CC6 ,F ′, {A}〉 Back−→

〈A{A},F ′,>〉 Propagate−→ 〈A{A}DC1 ,F ′,>〉 Propagate−→
〈A{A}DC1B

C3 ,F ′,>〉 Propagate−→ 〈A{A}DC1B
C3C

C5 ,F ′,>〉

where F ′ = F ∪ {A}.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 60 / 376

Example: DPLL with Learning

P1∧ (¬P2∨P3)∧ (¬P4∨P3)∧ (P2∨P4)∧ (¬P1∨¬P4∨¬P3)∧ (P4∨¬P3)

F = {C1,C2,C3,C4,C5,C6} with C1 = {P1}, C2 = {P2,P3},
C3 = {P4,P3}, C4 = {P2,P4}, C5 = {P1,P4,P3}, C6 = {P4,P3}.

〈ε,F ,>〉 Propagate−→ 〈PC1
1 ,F ,>〉 Decide−→ 〈PC1

1 P2
�
,F ,>〉 Propagate−→

〈PC1
1 P2

�
PC4

4 ,F ,>〉 Propagate−→ 〈PC1
1 P2

�
PC4

4 PC3
3 ,F ,>〉 Conflict−→

〈PC1
1 P2

�
PC4

4 PC3
3 ,F , {P1,P4,P3}〉

Explain−→
〈PC1

1 P2
�

PC4
4 PC3

3 ,F , {P1,P4}〉
Learn−→ 〈PC1

1 P2
�

PC4
4 PC3

3 ,F ′, {P1,P4}〉
Back−→

〈PC1
1 P4

C7 ,F ′,>〉 Propagate−→ 〈PC1
1 P4

C7PC4
2 ,F ′,>〉 Propagate−→

〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′,>〉 Conflict−→ 〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′, {P4,P3}〉
Explain−→

〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′, {P4,P2}〉
Explain−→ 〈PC1

1 P4
C7PC4

2 PC2
3 ,F ′, {P4}〉

Explain−→
〈PC1

1 P4
C7PC4

2 PC2
3 ,F ′, {P1}〉

Explain−→ 〈PC1
1 P4

C7PC4
2 PC2

3 ,F ′, ∅〉 Learn−→
〈PC1

1 P4
C7PC4

2 PC2
3 ,F ′ ∪ {∅}, ∅〉 where C7 = {P1,P4}, F ′ = F ∪ {C7}.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 61 / 376

Correctness of DPLL (with Learning)

Theorem (Correctness of DPLL)

Let F be a Σ-formula and F ′ its propositional core. Let

〈ε,F ′,>〉 = 〈M0,F0,C0〉 −→ . . . −→ 〈Mn,Fn,Cn〉

be a maximal sequence of rule application of DPLL.

Then F is satisfiable iff Cn is >.

Before proving the theorem, we note some important invariants:

Mi never contains a literal more than once.
Mi never contains ` and `.
If Mi = M ′`C` · · · , then C` = {`1, . . . , `k , `} with `1, . . . , `k in M ′

and C` ∈ Fi .
Every ` ∈ Ci occurs negated in Mi .
Ci is always implied by Fi .
F is equivalent to Fi for all steps i of the computation.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 62 / 376

Correctness proof

Proof: If the sequence ends with 〈Mn,Fn,>〉 and there is no rule
applicable, then:

Since Decide is not applicable, all literals of Fn appear in Mn either
positively or negatively.

Since Conflict is not applicable, for each clause at least one literal
appears in Mn positively.

Thus, Mn is a model for Fn, which is equivalent to F .

If the sequence ends with 〈Mn,Fn,Cn〉 with Cn 6= >.
Assume Cn = {`1, . . . , `k , `} 6= ∅. Note that `1, . . . , `k , ` in M.
W.l.o.g., ` is the last one that occurs in M. Then:

Since Learn is not applicable, Cn ∈ Fn.

Since Explain is not applicable ` must be annotated with �.

However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and Cn = ∅ (= ⊥).
Since F implies Cn, F is not satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 63 / 376

Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence

〈ε,F ,>〉 = 〈M0,F0,C0〉 −→ 〈M1,F1,C1〉 −→ . . .

terminates.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 64 / 376

Proof of Termination

There are finitely many literals, therefore,

finitely many clauses C ,
finitely many sequences M of literals annotated with clauses
finitely many sets of clauses F .

Since everything is finite, it is sufficient to show that there is no cycle, by
defining a partial ordering.

We define M ≺ M ′ if M$ comes lexicographically before M ′$, where
`C is smaller than `′� and $ is considered to be the largest symbol.
Example: `C1

1 `C2
2 $ ≺ `C1

1 `�3 `
C4
4 $ ≺ `C1

1 `�3 $ ≺ `C1
1 $

For a sequence M = `1 . . . `n, the conflict clauses are ordered by their
weight w : w(>) = 2n+1, w(C) =

∑
`i∈C 2i , w(∅) = 0.

The weight depends on the order in which the literals occur in M.
Example: ∅ ≺`1`2`3

{`1, `2} ≺`1`2`3
{`3} ≺`1`2`3

{`2, `3} ≺`1`2`3
>

These are well-orderings, because the domains are finite.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 65 / 376

Proof of Termination (cont.)

Termination Proof: Every rule application decreases the value of
〈Mi ,Fi ,Ci 〉 according to the well-ordering:

〈M,F ,C 〉 ≺ 〈M ′,F ′,C ′〉, iff


M ≺ M ′,

or M = M ′,C ≺M C ′,

or M = M ′,C = C ′,F) F ′.

Hence there is no cycle and the DPLL algorithm terminates.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 66 / 376

Example

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

Unit propagation sets P0 and Pn to true.

Decide, e.g. A1, then propagate P1

Continue until An−1, then propagate Pn−1,An and Bn

Conflict: {An,Bn}.
Explain computes new conflict clause: {Pn−1,Pn}.
Conflict clause does not depend on A1, . . . ,An−1 and can be used
again.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 67 / 376

DPLL (without Learning)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 68 / 376

DPLL with CDCL

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 69 / 376

Some Notes about DPLL with Learning

Pure Literal Propagation is unnecessary:
A pure literal is always chosen right and never causes a conflict.

Modern SAT-solvers use this procedure but differ in

heuristics to choose literals/clauses.
efficient data structures to find unit clauses.
better conflict resolution to minimize learned clauses.
restarts (without forgetting learned clauses).

Even with the optimal heuristics DPLL is still exponential:
The Pidgeon-Hole problem requires exponential resolution proofs.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 70 / 376

Summary

Syntax and Semantics of Propositional Logic

Methods to decide satisfiability/validity of formulae:

Truth table
Semantic Argument
DPLL

Run-time of all presented algorithms is worst-case exponential in
length of formula.

Deciding satisfiability is NP-complete.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 71 / 376

	Organisation
	Motivation
	Contents of Lecture
	Foundations: Propositional Logic
	Satisfiability and Validity
	Normal Forms
	DPLL

	First-Order Logic
	Satisfiability and Validity
	Normal Forms

	Theories
	Theory of Equality
	T-Validity and T-Satisfiability
	Natural Numbers and Integers
	Rationals and Reals
	Recursive Data Structures
	Arrays
	Combination of Theories
	Decidability

	Quantifier Elimination
	Rationals: Ferrante and Rackoff
	Integers: Cooper's Method

	Quantifier-free Theory of Equality
	Congruence Closure Algorithm

	Theory of Lists
	Quantifier-free Rationals
	Dutertre–de Moura Algorithm
	Termination
	Strict Bounds

	Theory of Arrays
	Array Property Fragment
	Theory of Integer-Indexed Arrays

	DPLL(T)
	Program Correctness
	Total Correctness

	Conclusion

