Decision Procedures

Jochen Hoenicke

กั Software Engineering
$-\frac{\text { 品 }}{\text { 른 }}$
Albert-Ludwigs-University Freiburg

Winter Term 2019/2020

Foundations: Propositional Logic

Syntax of Propositional Logic

Atom truth symbols T ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \cdots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a
logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$\left(F_{1} \wedge F_{2}\right)$	"and"	(conjunction)
$\left(F_{1} \vee F_{2}\right)$	"or"	(disjunction)
$\left(F_{1} \rightarrow F_{2}\right)$	"implies"	(implication)
$\left(F_{1} \leftrightarrow F_{2}\right)$	"if and only if"	(iff)

Example: Syntax

formula $F:((P \wedge Q) \rightarrow(T \vee \neg Q))$
atoms: P, Q, T
literal: $\neg Q$
subformulas: $(P \wedge Q), \quad(T \vee \neg Q)$
Parentheses can be omitted: $\quad F: P \wedge Q \rightarrow T \vee \neg Q$

- \neg binds stronger than
- \wedge binds stronger than
- \vee binds stronger than
- $\rightarrow, \leftrightarrow$.

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value $0 / 1$ where 0 corresponds to value false 1 true

Interpretation I: $\{P \mapsto 1, Q \mapsto 0, \cdots\}$
Evaluation of logical operators:

F_{1}	F_{2}	$\neg F_{1}$	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0					
0	1		0	0	1	1
1	0		0	1	1	0
1	1		1	1	0	0
			1	1	1	

Example: Semantics

$$
\begin{aligned}
& F: P \wedge Q \rightarrow P \vee \neg Q \\
& I:\{P \mapsto 1, Q \mapsto 0\} \\
& \qquad
\end{aligned}
$$

F evaluates to true under I

Inductive Definition of PL's Semantics

$$
\begin{array}{llll}
I \models F & \text { if } F \text { evaluates to } & 1 / \text { true } & \text { under } I \\
I \not \models F & 0 / \text { false } &
\end{array}
$$

Base Case:

$$
\begin{aligned}
& I \not \models T \\
& I \not \models \perp \\
& I \models P \quad \text { iff } \quad I[P]=1 \\
& I \not \models P \quad \text { iff } \quad I[P]=0
\end{aligned}
$$

Inductive Case:

$$
\begin{array}{ll}
I \models \neg F & \text { iff } I \not \models F \\
I \models F_{1} \wedge F_{2} & \text { iff } I \models F_{1} \text { and } I \models F_{2} \\
I \models F_{1} \vee F_{2} & \text { iff } I \models F_{1} \text { or } I \models F_{2} \\
I \models F_{1} \rightarrow F_{2} & \text { iff, if } I \models F_{1} \text { then } I \models F_{2} \\
I \models F_{1} \leftrightarrow F_{2} & \text { iff, } I \models F_{1} \text { and } I \models F_{2}, \\
& \quad \text { or } I \not \models F_{1} \text { and } I \not \models F_{2}
\end{array}
$$

Example: Inductive Reasoning

$$
\begin{gathered}
F: P \wedge Q \rightarrow P \vee \neg Q \\
I:\{P \mapsto 1, Q \mapsto 0\}
\end{gathered}
$$

1. $I \models P$
2. $I \not \vDash Q$
3. $\quad I \models \neg Q$
4. $I \not \vDash P \wedge Q$
5. $\quad I \models P \vee \neg Q$
6. $\quad I \models F$
since $I[P]=1$
since $I[Q]=0$
by 2 , \neg
by $2, \wedge$
by $1, \vee$
by $4, \rightarrow \quad$ Why?

Thus, F is true under I.

Remark: Functional Programming

Formulas can be embedded in functional languages, e.g.
datatype $\mathbf{f m l}=$ Var of int \mid False \mid True \mid Not of $\mathbf{f m l}$
|AND of $\mathbf{f m l} * \mathbf{f m l} \mid$ OR of $\mathbf{f m l} * \mathbf{f m l} \mid$ Impl of $\mathbf{f m l} * \mathbf{f m l}$ IFF of $\mathbf{f m l} * \mathbf{f m l}$

The evaluation operator \vDash can be implemented by a recursive function:
let rec EVAL $(I:$ int \rightarrow bool $)(F: \mathbf{f m l})=$ match F with

Var x	\rightarrow	($1 \times$)
True	\rightarrow	true
False	\rightarrow	false
Not F1	\rightarrow	(not (EVAL / F1))
And F1 F2	\rightarrow	(EVAL / F1) \& (EVAL / F2)
Or F1 F2	\rightarrow	(EVAL / F1) \| (EVAL / F2)
Impl F1 F2	\rightarrow	(not (EVAL / F1)) (EVAL / F2)
Iff F1 F2	\rightarrow	(eval I (Impl F1 F2)) \& (eval

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \vDash F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I: l \models F$ iff $\neg \exists l: l \not \models F$ iff $\neg F$ is unsatisfiable.
Decision Procedure: An algorithm for deciding validity or satisfiability.

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.
Which of the following formulae is satisfiable, which is valid?

- $F_{1}: P \wedge Q$ satisfiable, not valid
- $F_{2}: \neg(P \wedge Q)$ satisfiable, not valid
- $F_{3}: P \vee \neg P$ satisfiable, valid
- $F_{4}: \neg(P \vee \neg P)$ unsatisfiable, not valid
- $F_{5}:(P \rightarrow Q) \wedge(P \vee Q) \wedge \neg Q$ unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

Decision Procedure

We will present three Decision Procedures for propositional logic

- Truth Tables
- Semantic Argument
- DPLL/CDCL

Method 1: Truth Tables

$F: P \wedge Q \rightarrow P \vee \neg Q$

P	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Thus F is valid.

$$
F: P \vee Q \rightarrow P \wedge Q
$$

P	Q	$P \vee Q$	$P \wedge Q$	F
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1
\leftarrow	\leftarrow satisfying I			

Thus F is satisfiable, but invalid.

Method 2: Semantic Argument

- Assume F is not valid and I a falsifying interpretation: $I \not \models F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

$$
\begin{aligned}
& \frac{l \models \neg F}{I \not \models F} \\
& \frac{l \not \models \neg F}{I \models F} \\
& \begin{array}{l}
I \models F \wedge G \\
I \models F \\
I \models G \quad \text { เand }
\end{array} \\
& \left.\frac{I \not \vDash F \wedge G}{I \not \models F}\right|_{\substack{\text { or }}} ^{l \not \vDash G} \\
& \begin{array}{l}
I \models F \\
I \not \models F \\
I \models \perp
\end{array} \\
& \begin{array}{c}
I \models F \vee G \\
\hline I \models F \quad \mid \models G
\end{array} \\
& \begin{array}{l}
I \not \vDash F \vee G \\
I \not \models F \\
I \not \vDash G
\end{array} \\
& \begin{array}{c}
I \vDash F \rightarrow G \\
I \not \models F \quad|\quad|=G
\end{array} \\
& \begin{array}{cc}
l \models F \leftrightarrow G \\
\hline I \models F & I \not \models F \\
I \models G & \quad l \not \models G
\end{array} \\
& \begin{array}{cc}
l \not \models F \leftrightarrow G \\
\hline I \models F & I \nLeftarrow F \\
I \not \models G & I \neq G
\end{array}
\end{aligned}
$$

Example

Prove $\quad F: P \wedge Q \rightarrow P \vee \neg Q \quad$ is valid.
Let's assume that F is not valid and that I is a falsifying interpretation.

1. $\quad \mid \nmid P \wedge Q \rightarrow P \vee \neg Q$	assumption
2. $\quad I \vDash P \wedge Q$	1, Rule \rightarrow
3. $I \not \vDash P \vee \neg Q$	1, Rule \rightarrow
4. $\quad I \models P$	2, Rule \wedge
5. $I \not \vDash P$	3, Rule \vee
6. $\quad I \neq \perp$	4 and 5 are contradictory

Thus F is valid.

Example 2

Prove $\quad F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R) \quad$ is valid.
Let's assume that F is not valid.

Our assumption is incorrect in all cases $-F$ is valid.

Example 3

Is $\quad F: P \vee Q \rightarrow P \wedge Q \quad$ valid?
Let's assume that F is not valid.

$$
\begin{aligned}
& \text { 1. } \quad I \not \vDash P \vee Q \rightarrow P \wedge Q \quad \text { assumption } \\
& \text { 2. } \quad I \vDash P \vee Q \quad 1 \text { and } \rightarrow \\
& \text { 3. } I \not \vDash P \wedge Q \\
& 1 \text { and } \rightarrow
\end{aligned}
$$

We cannot always derive a contradiction. F is not valid.
Falsifying interpretation:
 We have to derive a contradiction in all cases for F to be valid.

Method 3: DPLL/CDCL

DPLL/CDCL is a efficient decision procedure for propositional logic. History:

- 1960s: Davis, Putnam, Logemann, and Loveland presented DPLL.
- 1990s: Conflict Driven Clause Learning (CDCL).
- Today, very efficient solvers using specialized data structures and improved heuristics.
DPLL/CDCL doesn't work on arbitrary formulas, but only on a certain normal form.

Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.
The formula in normal form should be equivalent to the original input.

Equivalence

F_{1} and F_{2} are equivalent ($F_{1} \Leftrightarrow F_{2}$) iff for all interpretations $I, I \models F_{1} \leftrightarrow F_{2}$

To prove $F_{1} \Leftrightarrow F_{2}$ show $F_{1} \leftrightarrow F_{2}$ is valid.
$F_{1} \underline{\text { implies }} F_{2}\left(F_{1} \Rightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \rightarrow F_{2}$
$F_{1} \Leftrightarrow F_{2}$ and $F_{1} \Rightarrow F_{2}$ are not formulae!

Equivalence is a Congruence relation

If $F_{1} \Leftrightarrow F_{1}^{\prime}$ and $F_{2} \Leftrightarrow F_{2}^{\prime}$, then

- $\neg F_{1} \Leftrightarrow \neg F_{1}^{\prime}$
- $F_{1} \vee F_{2} \Leftrightarrow F_{1}^{\prime} \vee F_{2}^{\prime}$
- $F_{1} \wedge F_{2} \Leftrightarrow F_{1}^{\prime} \wedge F_{2}^{\prime}$
- $F_{1} \rightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \rightarrow F_{2}^{\prime}$
- $F_{1} \leftrightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \leftrightarrow F_{2}^{\prime}$
- if we replace in a formula F a subformula F_{1} by F_{1}^{\prime} and obtain F^{\prime}, then $F \Leftrightarrow F^{\prime}$.

Negation Normal Form (NNF)

Negations appear only in literals. (only \neg, \wedge, \vee)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \quad \neg \perp \Leftrightarrow \top \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law } \quad \begin{aligned}
& F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)
\end{aligned}
$$

Example: Negation Normal Form

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into NNF

$$
\begin{aligned}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg \neg Q_{2} \vee R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right)
\end{aligned}
$$

The last formula is equivalent to F and is in NNF.

Is this a (deterministic) algorithm?

- static finiteness: Can the algorithm be described in finite space?
- dynamic finiteness: Does the algorithm use finite space?
- termination: Does the algorithm run in finite time?
- deterministic: the order of steps determined?
- deterministic result: is the result always the same?
termination: Yes, but not obvious.
deterministic: No
deterministic result: Yes (not obvious)

NNF in ML

let $\operatorname{rec} \operatorname{NNF}(F: \mathbf{f m l})=$ match F with
| Not True
Not (Not F1)

And F1 F2
OR F1 F2
Impl F1 F2
Iff F1 F2

Not (And F1 F2) \rightarrow Or (nnf (Not F1)) (nnf (Not F2))
Not (Or F1 F2) \rightarrow And (nnf (Not F1)) (nnf (Not F2))
Not (Impl F1 F2) \rightarrow And (nnf F1) (nnf (Not F2))
$\operatorname{Not}(\operatorname{IfF} F 1 F 2) \rightarrow \operatorname{OR} \quad($ And $($ nnf $F 1)($ nnf $($ Not $F 2)))$
$\begin{aligned} \rightarrow \quad \text { Or } & (\text { And (nnf F1) (nnf (Not F2))) } \\ & \text { (And (nnf (Not F1)) (nnf F2)) }\end{aligned}$
\rightarrow False $\quad \mid$ Not False \rightarrow True
\rightarrow NNF F1
\rightarrow Or (nnf (Not F1)) (nnf (Not F2))
\rightarrow And (nnf (Not F1)) (Nnf (Not F2))
\rightarrow And (nnF F1) (NnF F2)
\rightarrow OR (nnf F1) (nnf F2)
\rightarrow OR (nnf (Not F1)) (NnF F2)
\rightarrow And (Or (nnf (Not F1)) (nnf F2))
(Or (nnf F1) (nnf (Not F2)))

Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

$$
\bigvee_{i} \bigwedge_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\left(F_{1} \vee F_{2}\right) \wedge F_{3} \Leftrightarrow\left(F_{1} \wedge F_{3}\right) \vee\left(F_{2} \wedge F_{3}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) \Leftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right)
\end{array}\right\} \text { dist }
$$

Example

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into DNF

$$
\begin{array}{rlr}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) & \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right) & \text { in NNF } \\
\Leftrightarrow & \left(Q_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) \vee\left(R_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) & \text { dist } \\
\Leftrightarrow & \left(Q_{1} \wedge Q_{2}\right) \vee\left(Q_{1} \wedge R_{2}\right) \vee\left(R_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right) & \text { dist }
\end{array}
$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$
\bigwedge_{i} \bigvee_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

A disjunction of literals $P_{1} \vee P_{2} \vee \neg P_{3}$ is called a clause. For brevity we write it as set: $\left\{P_{1}, P_{2}, \overline{P_{3}}\right\}$.
A formula in CNF is a set of clauses (a set of sets of literals).

Equisatisfiability

Definition (Equisatisfiability)

F and F^{\prime} are equisatisfiable, iff

$$
F \text { is satisfiable if and only if } F^{\prime} \text { is satisfiable }
$$

Every formula is equisatifiable to either \top or \perp. There is a efficient conversion of F to F^{\prime} where

- F^{\prime} is in CNF and
- F and F^{\prime} are equisatisfiable

Note: efficient means polynomial in the size of F.

Conversion to equisatisfiable CNF

Basic Idea:

- Introduce a new variable P_{G} for every subformula G; unless G is already an atom.
- For each subformula $G: G_{1} \circ G_{2}$ produce a small formula $P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$
P_{F} \wedge \bigwedge_{G} C N F\left(P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}\right)
$$

is equisatisfiable to F.
The number of subformulae is linear in the size of F.
The time to convert one small formula is constant!

Example: CNF

Convert $F: P \vee Q \rightarrow P \wedge \neg R$ to CNF.
Introduce new variables: $P_{F}, P_{P \vee Q}, P_{P \wedge \neg R}, P_{\neg R}$. Create new formulae and convert them to CNF separately:

- $P_{F} \leftrightarrow\left(P_{P \vee Q} \rightarrow P_{P \wedge \neg R}\right)$ in CNF:

$$
F_{1}:\left\{\left\{\overline{P_{F}}, \overline{P_{P \vee Q}}, P_{P \wedge \neg R}\right\},\left\{P_{F}, P_{P \vee Q}\right\},\left\{P_{F}, \overline{P_{P \wedge \neg R}}\right\}\right\}
$$

- $P_{P \vee Q} \leftrightarrow P \vee Q$ in CNF:

$$
F_{2}:\left\{\left\{\overline{P_{P \vee Q}}, P \vee Q\right\},\left\{P_{P \vee Q}, \bar{P}\right\},\left\{P_{P \vee Q}, \bar{Q}\right\}\right\}
$$

- $P_{P \wedge \neg R} \leftrightarrow P \wedge P_{\neg R}$ in CNF:

$$
F_{3}:\left\{\left\{\overline{P_{P \wedge \neg R}} \vee P\right\},\left\{\overline{P_{P \wedge \neg R}}, P_{\neg R}\right\},\left\{P_{P \wedge \neg R}, \bar{P}, \overline{P_{\neg R}}\right\}\right\}
$$

- $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_{4}:\left\{\left\{\overline{P_{\neg R}}, \bar{R}\right\},\left\{P_{\neg R}, R\right\}\right\}$ $\left\{\left\{P_{F}\right\}\right\} \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ is in CNF and equisatisfiable to F.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Algorithm to decide PL formulae in CNF.
- Published by Davis, Logemann, Loveland (1962).
- Often miscited as Davis, Putnam (1960), which describes a different algorithm.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

$$
\begin{aligned}
& \text { let rec DPLL } F= \\
& \text { let } F^{\prime}=\text { PROP } F \text { in } \\
& \text { let } F^{\prime \prime}=\text { PLP } F^{\prime} \text { in } \\
& \text { if } F^{\prime \prime}=\top \text { then true } \\
& \text { else if } F^{\prime \prime}=\perp \text { then false } \\
& \text { else } \\
& \quad \text { let } P=\text { CHOOSE vars }\left(F^{\prime \prime}\right) \text { in } \\
& \quad\left(\text { DPLL } F^{\prime \prime}\{P \mapsto \top\}\right) \vee\left(\text { DPLL } F^{\prime \prime}\{P \mapsto \perp\}\right)
\end{aligned}
$$

Unit Propagagion

Unit Propagation (PROP)
If a clause contains one literal ℓ,

- Set ℓ to T.
- Remove all clauses containing ℓ.
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$
\frac{\ell \quad \neg \vee C}{C} \leftarrow \text { clause }
$$

Pure Literal Propagagion

Pure Literal Propagation (PLP)
If P occurs only positive (without negation), set it to T. If P occurs only negative set it to \perp.

Example

$$
F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)
$$

Branching on Q

$$
F\{Q \mapsto \top\}:(R) \wedge(\neg R) \wedge(P \vee \neg R)
$$

By unit resolution

$$
\frac{R \quad(\neg R)}{\perp}
$$

$F\{Q \mapsto \top\}=\perp \Rightarrow$ false
On the other branch
$F\{Q \mapsto \perp\}:(\neg P \vee R)$
$F\{Q \mapsto \perp, R \mapsto \top, P \mapsto \perp\}=\top \Rightarrow$ true
F is satisfiable with satisfying interpretation

$$
I:\{P \mapsto \text { false, } Q \mapsto \text { false, } R \mapsto \text { true }\}
$$

Example

$F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)$

Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg(C \leftrightarrow B)$

In CNF:

- $\{\bar{A}, \bar{D}\},\{A, D\}$
- $\{\bar{B}, \bar{A}\},\{B, A\}$
- $\{\bar{C}, \bar{A}\},\{C, A\}$
- $\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}$

Solving Knights and Knaves

$$
\begin{array}{r}
F:\{\{\bar{A}, \bar{D}\},\{A, D\},\{\bar{B}, \bar{A}\},\{B, A\},\{\bar{C}, \bar{A}\},\{C, A\}, \\
\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}
\end{array}
$$

PROP and PLP are not applicable. Decide on A :
$F\{A \mapsto \perp\}:\{\{D\},\{B\},\{C\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}$
By Prop we get:

$$
F\{A \mapsto \perp, D \mapsto \top, B \mapsto \top, C \mapsto \top\}: \perp
$$

Unsatisfiable! Now set A to T :
$F\{A \mapsto \top\}:\{\{\bar{D}\},\{\bar{B}\},\{\bar{C}\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}$
By Prop we get:

$$
F\{A \mapsto \top, D \mapsto \perp, B \mapsto \perp, C \mapsto \perp\}: \top
$$

Satisfying assignment!

Learning is Useful

Consider the following problem:

$$
\begin{array}{r}
\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\overline{P_{1}}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\}\right. \\
\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}
\end{array}
$$

For some literal orderings, we need exponentially many steps. Note, that

$$
\left\{\left\{A_{i}, B_{i}\right\},\left\{\overline{P_{i-1}}, \overline{A_{i}}, P_{i}\right\},\left\{\overline{P_{i-1}}, \overline{B_{i}}, P_{i}\right\}\right\} \Rightarrow\left\{\left\{\overline{P_{i-1}}, P_{i}\right\}\right\}
$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables). When you assign true to a literal ℓ, also assign false to $\bar{\ell}$.
For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a unit clause if all but one literals are assigned false and the last literal is unassigned.
If the assignment of a literal from a conflict clause is removed we get a unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!

Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we remember the conflict clause.
- If variable in conflict was derived by unit propagation use the resolution rule to generate a new conflict clause.

$$
\frac{\ell \vee C_{1} \quad \neg \ell \vee C_{2}}{C_{1} \vee C_{2}}
$$

- If variable in conflict was derived by decision, use learned conflict as unit clause

DPLL with Learning (CDCL)

We describe DPLL a set of rules modifying a configuration.
A configuration is a triple

$$
\langle M, F, C\rangle,
$$

where

- M (model) is a sequence of literals (that are currently set to true) annotated with \square for decisions or a clause for unit propagation.
- F (formula) is a formula in CNF, i. e., a set of clauses where each clause is a set of literals.
- C (conflict) is either T or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not \vDash C$. Thus, a conflict clause shows $M \not \vDash F$.

Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,

Explain $\frac{\langle M, F, C \cup\{\bar{\ell}\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle} \quad$ and $C_{\ell}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\}$.
Here, $\ell^{C_{\ell}}$ in M means that the literal ℓ occurs in M annotated with the clause C_{ℓ}.

Example: for $C_{1}=\left\{P_{1}\right\}, C_{2}=\left\{P_{3}, \overline{P_{4}}\right\}, M=P_{1}^{C_{1}} \overline{P_{3}} \square \overline{P_{2}} \square \overline{P_{4}}{ }^{C_{2}}$,
$F=\left\{C_{1}, C_{2}\right\}$, and $C=\left\{P_{2}\right\}$ the transition

$$
\left\langle M, F,\left\{P_{2}, P_{4}\right\}\right\rangle \longrightarrow\left\langle M, F,\left\{P_{2}, P_{3}\right\}\right\rangle
$$

is possible.

Rules for CDCL (Conflict Driven Clause Learning)

Decide $\frac{\langle M, F, T\rangle}{\left\langle M \cdot \ell^{\square}, F, T\right\rangle}$
Propagate $\frac{\langle M, F, T\rangle}{\left\langle M \cdot \ell^{C_{\ell}}, F, T\right\rangle}$
Conflict $\frac{\langle M, F, T\rangle}{\left\langle M, F,\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
Explain $\frac{\langle M, F, C \cup\{\bar{\ell}\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
Learn $\frac{\langle M, F, C\rangle}{\langle M, F \cup\{C\}, C\rangle}$
Back $\frac{\left\langle M, F, C_{\ell}\right\rangle}{\left\langle M^{\prime} \cdot \ell_{\ell}, F, T\right\rangle}$
where $\ell \in \operatorname{lit}(F), \ell, \bar{\ell}$ in M
where $C_{\ell}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$ with $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in $M, \ell, \bar{\ell}$ in M.
where $\left\{\ell_{1}, \ldots, \ell_{k}\right\} \in F$ and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M.
where $\bar{\ell} \notin C, \ell^{C_{\ell}}$ in M, and $C_{\ell}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\}$.
where $C \neq T, C \notin F$.
where $C_{\ell}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$, $M=M^{\prime} \cdot \ell^{\square} \square \cdots$, and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in $M^{\prime}, \bar{\ell}$ in M^{\prime}.

Running DPLL with Learning

A run of DPLL is a maximal sequence of configurations

$$
\left\langle M_{0}, F_{0}, C_{0}\right\rangle \rightarrow\left\langle M_{1}, F_{1}, C_{1}\right\rangle \rightarrow \ldots
$$

starting with $M_{0}=\epsilon, F$ the input formula in CNF, and $C_{0}=T$, and where each transition follows one of the six rules.
If the run ends with $\emptyset \in F$, the formula is unsatisfiable. Otherwise it is satisfiable and the last M gives an interpretation for the input formula F.

Example: Knights and Knaves

$F=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}, C_{9}, C_{10}\right\}$ with $C_{1}=\{\bar{A}, \bar{D}\}$,
$C_{2}=\{A, D\}, C_{3}=\{\bar{B}, \bar{A}\}, C_{4}=\{B, A\}, C_{5}=\{\bar{C}, \bar{A}\}, C_{6}=\{C, A\}$,
$C_{7}=\{\bar{D}, \bar{C}, \bar{B}\}, C_{8}=\{\bar{D}, C, B\}, C_{9}=\{D, \bar{C}, B\}, C_{10}=\{D, C, \bar{B}\}$.
$\langle\epsilon, F, T\rangle \xrightarrow{\text { Decide }}\left\langle\bar{A}^{\square}, F, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle\bar{A}^{\square} D^{C_{2}}, F, T\right\rangle \xrightarrow{\text { Propagate }}$
$\left\langle\bar{A}^{\square} D^{C_{2}} B^{C_{4}}, F, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle\bar{A}^{\square} D^{C_{2}} B^{C_{4}} C^{C_{6}}, F, T\right\rangle \xrightarrow{\text { Conflict }}$
$\left\langle\bar{A} D^{C_{2}} B^{C_{4}} C^{C_{6}}, F,\{\bar{D}, \bar{C}, \bar{B}\}\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle\bar{A}^{\square} D^{C_{2}} B^{C_{4}} C^{C_{6}}, F,\{A, \bar{D}, \bar{B}\}\right\rangle \xrightarrow{\text { Explain }}\left\langle\bar{A}^{\square} D^{C_{2}} B^{C_{4}} C^{C_{6}}, F,\{A, \bar{B}\}\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle\bar{A}^{\square} D^{C_{2}} B^{C_{4}} C^{C_{6}}, F,\{A\}\right\rangle \xrightarrow{\text { Learn }}\left\langle\bar{A}^{\square} D^{C_{2}} B^{C_{4}} C^{C_{6}}, F^{\prime},\{A\}\right\rangle \xrightarrow{\text { Back }}$
$\left\langle A^{\{A\}}, F^{\prime}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle A^{\{A\}} \bar{D}^{C_{1}}, F^{\prime}, T\right\rangle \xrightarrow{\text { Propagate }}$
$\left\langle A^{\{A\}} \bar{D}^{C_{1}} \bar{B}^{C_{3}}, F^{\prime}, \top\right\rangle \xrightarrow{\text { Propagate }}\left\langle A^{\{A\}} \bar{D}^{C_{1}} \bar{B}^{C_{3}} \bar{C}^{C_{5}}, F^{\prime}, \top\right\rangle$
where $F^{\prime}=F \cup\{A\}$.

Example: DPLL with Learning

$$
P_{1} \wedge\left(\neg P_{2} \vee P_{3}\right) \wedge\left(\neg P_{4} \vee P_{3}\right) \wedge\left(P_{2} \vee P_{4}\right) \wedge\left(\neg P_{1} \vee \neg P_{4} \vee \neg P_{3}\right) \wedge\left(P_{4} \vee \neg P_{3}\right)
$$

$$
F=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \text { with } C_{1}=\left\{P_{1}\right\}, \underline{C_{2}}=\left\{\overline{P_{2}}, P_{3}\right\},
$$

$$
C_{3}=\left\{\overline{P_{4}}, P_{3}\right\}, C_{4}=\left\{P_{2}, P_{4}\right\}, C_{5}=\left\{\overline{P_{1}}, \overline{P_{4}}, \overline{P_{3}}\right\}, C_{6}=\left\{P_{4}, \overline{P_{3}}\right\}
$$

$$
\langle\epsilon, F, T\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}^{C_{1}}, F, \top\right\rangle \xrightarrow{\text { Decide }}\left\langle P_{1}^{C_{1}} \overline{P_{2}}, F, T\right\rangle \xrightarrow{\text { Propagate }}
$$

$$
\left\langle P_{1}^{C_{1}} \overline{P_{2}} P_{4}^{C_{4}}, F, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}^{C_{1}} \overline{P_{2}} P_{4}^{C_{4}} P_{3}^{C_{3}}, F, T\right\rangle \xrightarrow{\text { Conflict }}
$$

$$
\left\langle P_{1}^{C_{1}} \overline{P_{2}} P_{4}^{C_{4}} P_{3}^{C_{3}}, F,\left\{\overline{P_{1}}, \overline{P_{4}}, \overline{P_{3}}\right\}\right\rangle \xrightarrow{\text { Explain }}
$$

$$
\left\langle P_{1}^{C_{1}} \overline{P_{2}} P_{4}^{C_{4}} P_{3}^{C_{3}}, F,\left\{\overline{P_{1}}, \overline{P_{4}}\right\}\right\rangle \xrightarrow{\text { Learn }}\left\langle P_{1}^{C_{1}} \overline{P_{2}} P_{4}^{C_{4}} P_{3}^{C_{3}}, F^{\prime},\left\{\overline{P_{1}}, \overline{P_{4}}\right\}\right\rangle \xrightarrow{\text { Back }}
$$

$$
\left\langle P_{1}^{C_{1}} \overline{P_{4}}{ }^{C_{7}}, F^{\prime}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}^{C_{1}} \overline{P_{4}} C_{7} P_{2}^{C_{4}}, F^{\prime}, T\right\rangle \xrightarrow{\text { Propagate }}
$$

$$
\left\langle P_{1}^{C_{1}} \overline{P_{4} C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F^{\prime}, T\right\rangle \xrightarrow{\text { Conflict }}\left\langle P_{1}^{C_{1}} \bar{P}_{4} C_{7} P_{2}^{C_{4}} P_{3}^{C_{2}}, F^{\prime},\left\{P_{4}, \overline{P_{3}}\right\}\right\rangle \xrightarrow{\text { Explain }}
$$

$$
\left\langle P_{1}^{C_{1}} \overline{P_{4} C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F^{\prime},\left\{P_{4}, \overline{P_{2}}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1}^{C_{1}} \overline{P_{4} C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F^{\prime},\left\{P_{4}\right\}\right\rangle \xrightarrow{\text { Explain }}
$$

$$
\left\langle P_{1}^{C_{1}} \bar{P}_{4} C_{7} P_{2}^{C_{4}} P_{3}^{C_{2}}, F^{\prime},\left\{\overline{P_{1}}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1}^{C_{1}} \frac{\overline{P_{4}}}{} C_{7} P_{2}^{C_{4}} P_{3}^{C_{2}}, F^{\prime}, \emptyset\right\rangle \xrightarrow{\text { Learn }}
$$

$$
\left\langle P_{1}^{C_{1}} \overline{P_{4}}{ }_{7}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F^{\prime} \cup\{\emptyset\}, \emptyset\right\rangle \text { where } C_{7}=\left\{\overline{P_{1}}, \frac{5}{P_{4}}\right\}, F^{\prime}=F \cup\left\{C_{7}\right\}
$$

Correctness of DPLL (with Learning)

Theorem (Correctness of DPLL)

Let F be a \sum-formula and F^{\prime} its propositional core. Let

$$
\left\langle\epsilon, F^{\prime}, \top\right\rangle=\left\langle M_{0}, F_{0}, C_{0}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle M_{n}, F_{n}, C_{n}\right\rangle
$$

be a maximal sequence of rule application of DPLL.
Then F is satisfiable iff C_{n} is T.
Before proving the theorem, we note some important invariants:

- M_{i} never contains a literal more than once.
- M_{i} never contains ℓ and $\bar{\ell}$.
- If $M_{i}=M^{\prime} \ell_{\ell} \ldots$, then $C_{\ell}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\}$ with $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M^{\prime} and $C_{\ell} \in F_{i}$.
- Every $\ell \in C_{i}$ occurs negated in M_{i}.
- C_{i} is always implied by F_{i}.
- F is equivalent to F_{i} for all steps i of the computation.

Correctness proof

Proof: If the sequence ends with $\left\langle M_{n}, F_{n}, T\right\rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_{n} appear in M_{n} either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_{n} positively.
Thus, M_{n} is a model for F_{n}, which is equivalent to F.
If the sequence ends with $\left\langle M_{n}, F_{n}, C_{n}\right\rangle$ with $C_{n} \neq \mathrm{T}$.
Assume $C_{n}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \neq \emptyset$. Note that $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}, \bar{\ell}$ in M.
W.I.o.g., $\bar{\ell}$ is the last one that occurs in M. Then:
- Since Learn is not applicable, $C_{n} \in F_{n}$.
- Since Explain is not applicable $\bar{\ell}$ must be annotated with \square.
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_{n}=\emptyset(=\perp)$.
Since F implies C_{n}, F is not satisfiable.

Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)
Let F be a propositional formula. Then every sequence

$$
\langle\epsilon, F, \top\rangle=\left\langle M_{0}, F_{0}, C_{0}\right\rangle \longrightarrow\left\langle M_{1}, F_{1}, C_{1}\right\rangle \longrightarrow \ldots
$$

terminates.

Proof of Termination

There are finitely many literals, therefore,

- finitely many clauses C,
- finitely many sequences M of literals annotated with clauses
- finitely many sets of clauses F.

Since everything is finite, it is sufficient to show that there is no cycle, by defining a partial ordering.

- We define $M \prec M^{\prime}$ if $M \$$ comes lexicographically before $M^{\prime} \$$, where ℓ^{C} is smaller than ℓ^{\square} and $\$$ is considered to be the largest symbol.
Example: $\ell_{1}^{C_{1}} \ell_{2}^{C_{2}} \$ \prec \ell_{1}^{C_{1}} \ell_{3}^{\square} \ell_{4}^{C_{4}} \$ \prec \ell_{1}^{C_{1}} \ell_{3}^{\square} \$ \prec \ell_{1}^{C_{1}} \$$
- For a sequence $M=\overline{\ell_{1}} \ldots \overline{\ell_{n}}$, the conflict clauses are ordered by their weight $w: w(T)=2^{n+1}, w(C)=\sum_{\ell_{i} \in C} 2^{i}, w(\emptyset)=0$.
The weight depends on the order in which the literals occur in M. Example: $\emptyset \prec \overline{\ell_{1} \ell_{2} \ell_{3}}\left\{\ell_{1}, \ell_{2}\right\} \prec \overline{\ell_{1} \ell_{2} \ell_{3}}\left\{\ell_{3}\right\} \prec \overline{\ell_{1} \ell_{2} \ell_{3}}\left\{\ell_{2}, \ell_{3}\right\} \prec \overline{\ell_{1} \ell_{2} \ell_{3}} \top$
These are well-orderings, because the domains are finite.

Proof of Termination (cont.)

Termination Proof: Every rule application decreases the value of $\left\langle M_{i}, F_{i}, C_{i}\right\rangle$ according to the well-ordering:

$$
\langle M, F, C\rangle \prec\left\langle M^{\prime}, F^{\prime}, C^{\prime}\right\rangle \text {, iff }\left\{\begin{array}{l}
M \prec M^{\prime}, \\
\text { or } M=M^{\prime}, C \prec_{M} C^{\prime}, \\
\text { or } M=M^{\prime}, C=C^{\prime}, F \supsetneq F^{\prime} .
\end{array}\right.
$$

Hence there is no cycle and the DPLL algorithm terminates.

Example

$\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\overline{P_{1}}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\}\right.$, $\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}$

- Unit propagation sets P_{0} and $\overline{P_{n}}$ to true.
- Decide, e.g. A_{1}, then propagate $\overline{P_{1}}$
- Continue until A_{n-1}, then propagate $\overline{P_{n-1}}, \overline{A_{n}}$ and $\overline{B_{n}}$
- Conflict: $\left\{A_{n}, B_{n}\right\}$.
- Explain computes new conflict clause: $\left\{\overline{P_{n-1}}, P_{n}\right\}$.
- Conflict clause does not depend on A_{1}, \ldots, A_{n-1} and can be used again.

DPLL (without Learning)

DPLL with CDCL

Some Notes about DPLL with Learning

- Pure Literal Propagation is unnecessary:

A pure literal is always chosen right and never causes a conflict.

- Modern SAT-solvers use this procedure but differ in
- heuristics to choose literals/clauses.
- efficient data structures to find unit clauses.
- better conflict resolution to minimize learned clauses.
- restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

Summary

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
- Truth table
- Semantic Argument
- DPLL
- Run-time of all presented algorithms is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.

