Decision Procedures

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

Winter Term 2019/2020

Foundations: Propositional Logic

<u>Atom</u>	truth symbols $ op$ ("true") and $ op$ ("false")			
	propositional	variables $P, Q, R,$	P_1, Q_1, R_1, \cdots	
Literal	atom α or its negation $\neg \alpha$			
<u>Formula</u>	literal or application of a			
	logical connective to formulae F, F_1, F_2			
	$\neg F$	"not"	(negation)	
	$(F_1 \wedge F_2)$	"and"	(conjunction)	
	$(F_1 \vee F_2)$	"or"	(disjunction)	
	$(F_1 \rightarrow F_2)$	"implies"	(implication)	
	$(F_1 \leftrightarrow F_2)$	"if and only if"	(iff)	

Example: Syntax

formula
$$F : ((P \land Q) \rightarrow (\top \lor \neg Q))$$

atoms: P, Q, \top
literal: $\neg Q$
subformulas: $(P \land Q), \quad (\top \lor \neg Q)$

Parentheses can be omitted: $F : P \land Q \rightarrow \top \lor \neg Q$

- ¬ binds stronger than
- ullet \wedge binds stronger than
- $\bullet~\vee$ binds stronger than
- $\bullet \rightarrow, \leftrightarrow$.

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1where 0 corresponds to value false 1 true

Interpretation $I : \{P \mapsto 1, Q \mapsto 0, \cdots\}$

Evaluation of logical operators:

F_1	<i>F</i> ₂	$\neg F_1$	$F_1 \wedge F_2$	$F_1 \vee F_2$	$F_1 \rightarrow F_2$	$F_1 \leftrightarrow F_2$
0	0	1	0	0	1	1
0	1	L	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

$$F : P \land Q \rightarrow P \lor \neg Q$$

$$I : \{P \mapsto 1, Q \mapsto 0\}$$

$$\boxed{\begin{array}{c|c}P & Q & \neg Q & P \land Q & P \lor \neg Q & F\\\hline 1 & 0 & 1 & 0 & 1 & 1\\\hline 1 & = true & 0 = false\end{array}}$$

F evaluates to true under I

Inductive Definition of PL's Semantics

$$\begin{array}{l} I \models F & \text{if } F \text{ evaluates to } 1 \ / \text{ true } \text{ under } I \\ I \not\models F & 0 \ / \text{ false} \end{array}$$

Base Case:

 $I \models \top$ $I \not\models \bot$ $I \models P \quad \text{iff} \quad I[P] = 1$ $I \not\models P \quad \text{iff} \quad I[P] = 0$

Inductive Case:

$$\begin{array}{ll} I \models \neg F & \text{iff } I \not\models F \\ I \models F_1 \land F_2 & \text{iff } I \models F_1 \text{ and } I \models F_2 \\ I \models F_1 \lor F_2 & \text{iff } I \models F_1 \text{ or } I \models F_2 \\ I \models F_1 \rightarrow F_2 & \text{iff, if } I \models F_1 \text{ then } I \models F_2 \\ I \models F_1 \leftrightarrow F_2 & \text{iff, if } I \models F_1 \text{ and } I \models F_2, \\ or I \not\models F_1 \text{ and } I \not\models F_2 \end{array}$$

FREIBURG

Example: Inductive Reasoning

$$F : P \land Q \to P \lor \neg Q$$
$$I : \{P \mapsto 1, Q \mapsto 0\}$$

1.
$$I \models P$$
since $I[P] = 1$ 2. $I \not\models Q$ since $I[Q] = 0$ 3. $I \models \neg Q$ by 2, \neg 4. $I \not\models P \land Q$ by 2, \land 5. $I \models P \lor \neg Q$ by 1, \lor 6. $I \models F$ by 4, \rightarrow

Thus, F is true under I.

Remark: Functional Programming

Formulas can be embedded in functional languages, e.g.

The evaluation operator \models can be implemented by a recursive function:

```
let rec EVAL (I : int \rightarrow bool) (F : fml) =
match F with
| VAR x \rightarrow (I x)
| TRUE \rightarrow true
| FALSE \rightarrow false
| NOT F1 \rightarrow (not (EVAL / F1))
| AND F1 F2 \rightarrow (EVAL / F1) & (EVAL / F2)
| OR F1 F2 \rightarrow (EVAL / F1) | (EVAL / F2)
| IMPL F1 F2 \rightarrow (EVAL / F1) | (EVAL / F2)
| IFF F1 F2 \rightarrow (EVAL / (IMPL F1 F2)) & (EVAL / (IMPL F2 F1))
```


Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations I, $I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I : I \models F$ iff $\neg \exists I : I \not\models F$ iff $\neg F$ is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.

Jochen Hoenicke (Software Engineering)

Decision Procedures

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

- *F*₁ : *P* ∧ *Q* satisfiable, not valid
- F_2 : $\neg(P \land Q)$ satisfiable, not valid
- $F_3 : P \lor \neg P$ satisfiable, valid
- F_4 : $\neg(P \lor \neg P)$ unsatisfiable, not valid

•
$$F_5$$
 : $(P \rightarrow Q) \land (P \lor Q) \land \neg Q$
unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

JNI REIBURG

We will present three Decision Procedures for propositional logic

- Truth Tables
- Semantic Argument
- DPLL/CDCL

Method 1: Truth Tables

$$F : P \land Q \rightarrow P \lor \neg Q$$
 $P Q$
 $P \land Q$
 $\neg Q$
 $P \lor \neg Q$
 F

 0
 0
 1
 1
 1

 0
 1
 0
 0
 1

 1
 0
 0
 1
 1

 1
 1
 0
 1
 1

 1
 1
 0
 1
 1

Thus F is valid.

$$F : P \lor Q \to P \land Q$$

$$\boxed{\begin{array}{c|c} P & Q & P \land Q & F \\ \hline 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ \hline Thus F \text{ is satisfiable, but invalid.}} \leftarrow \text{satisfying } I$$

Т

UNI FREIBURG

- Assume F is not valid and I a falsifying interpretation: $I \not\models F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

FREIBURG

 $\mathsf{Prove} \quad F \, : \, P \, \land \, Q \, \rightarrow \, P \, \lor \, \neg Q \quad \text{ is valid.}$

Let's assume that F is not valid and that I is a falsifying interpretation.

1.	$I \not\models P \land Q ightarrow P \lor \neg Q$	assumption
2.	$I \models P \land Q$	1, Rule $ ightarrow$
3.	$I \not\models P \lor \neg Q$	1, Rule $ ightarrow$
4.	$I \models P$	2, Rule \wedge
5.	$I \not\models P$	3, Rule \lor
6.	$I \models \bot$	4 and 5 are contradictory

Thus F is valid.

Example 2

$$\mathsf{Prove} \quad F \,:\, (P \to Q) \land (Q \to R) \to (P \to R) \quad \text{ is valid.}$$

Let's assume that F is not valid.

Our assumption is incorrect in all cases — F is valid.

Example 3

 $\mathsf{Is} \quad F \,:\, P \,\lor\, Q \to P \,\land\, Q \quad \mathsf{valid}?$

Let's assume that F is not valid.

We cannot always derive a contradiction. F is not valid.

FREIBURG

 $\mathsf{DPLL}/\mathsf{CDCL}$ is a efficient decision procedure for propositional logic. History:

- 1960s: Davis, Putnam, Logemann, and Loveland presented DPLL.
- 1990s: Conflict Driven Clause Learning (CDCL).
- Today, very efficient solvers using specialized data structures and improved heuristics.

DPLL/CDCL doesn't work on arbitrary formulas, but only on a certain normal form.

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow ; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.

 F_1 and F_2 are equivalent $(F_1 \Leftrightarrow F_2)$ iff for all interpretations $I, I \models F_1 \leftrightarrow F_2$

To prove $F_1 \Leftrightarrow F_2$ show $F_1 \leftrightarrow F_2$ is valid.

 $\begin{array}{c} F_1 \ \underline{\text{implies}} \ F_2 \ (F_1 \ \Rightarrow \ F_2) \\ \hline \text{iff for all interpretations } I, \ I \ \models \ F_1 \ \rightarrow \ F_2 \end{array}$

 $F_1 \Leftrightarrow F_2$ and $F_1 \Rightarrow F_2$ are not formulae!

Jochen Hoenicke (Software Engineering)

Equivalence is a Congruence relation

If $F_1 \Leftrightarrow F'_1$ and $F_2 \Leftrightarrow F'_2$, then

- $\neg F_1 \Leftrightarrow \neg F'_1$
- $F_1 \vee F_2 \Leftrightarrow F_1' \vee F_2'$
- $F_1 \wedge F_2 \Leftrightarrow F'_1 \wedge F'_2$
- $F_1 \to F_2 \Leftrightarrow F_1' \to F_2'$
- $F_1 \leftrightarrow F_2 \Leftrightarrow F_1' \leftrightarrow F_2'$
- if we replace in a formula F a subformula F_1 by F'_1 and obtain F', then $F \Leftrightarrow F'$.

Negations appear only in literals. (only \neg, \land, \lor)

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$\neg \neg F_1 \Leftrightarrow F_1 \quad \neg \top \Leftrightarrow \bot \quad \neg \bot \Leftrightarrow \top$$
$$\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2 \\ \neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2 \\ F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \land \neg F_2 \\ F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$$

UNI FREIBURG

 $\mathsf{Convert} \quad F \ : \ (Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \to R_2) \text{ into } \mathsf{NNF}$

$$\begin{array}{l} (Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \to R_2) \\ \Leftrightarrow \quad (Q_1 \lor R_1) \land (\neg Q_2 \to R_2) \\ \Leftrightarrow \quad (Q_1 \lor R_1) \land (\neg \neg Q_2 \lor R_2) \\ \Leftrightarrow \quad (Q_1 \lor R_1) \land (Q_2 \lor R_2) \end{array}$$

The last formula is equivalent to F and is in NNF.

- static finiteness: Can the algorithm be described in finite space?
- dynamic finiteness: Does the algorithm use finite space?
- termination: Does the algorithm run in finite time?
- deterministic: the order of steps determined?
- deterministic result: is the result always the same?

termination: Yes, but not obvious. deterministic: No deterministic result: Yes (not obvious)

NNF in ML

let rec NNF (F : fml) =				
1	match F with			
	Not True	\rightarrow	False \mid Not False \rightarrow True	
	Noт (Not <i>F</i> 1)	\rightarrow	NNF F1	
	NOT (AND F1 F2)	\rightarrow	OR (NNF (NOT $F1$)) (NNF (NOT $F2$))	
	NOT (OR <i>F</i> 1 <i>F</i> 2)	\rightarrow	AND (NNF (NOT $F1$)) (NNF (NOT $F2$))	
	NOT (IMPL F1 F2)	\rightarrow	AND (NNF F1) (NNF (NOT F2))	
	Not (Iff F1 F2)	\rightarrow	OR (AND (NNF $F1$) (NNF (NOT $F2$)))	
			(AND (NNF (NOT F1)) (NNF F2))	
	And <i>F1 F</i> 2	\rightarrow	AND (NNF $F1$) (NNF $F2$)	
	Or <i>F1 F2</i>	\rightarrow	OR (NNF $F1$) (NNF $F2$)	
	Impl F1 F2	\rightarrow	OR (NNF (NOT $F1$)) (NNF $F2$)	
	Iff F1 F2	\rightarrow	AND (OR (NNF (NOT $F1$)) (NNF $F2$))	
			(Or (NNF F1) (NNF (NOT F2)))	
		\rightarrow	F	

_

Disjunction of conjunctions of literals

$$\bigvee_{i} \bigwedge_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$\begin{array}{c} (F_1 \lor F_2) \land F_3 \Leftrightarrow (F_1 \land F_3) \lor (F_2 \land F_3) \\ F_1 \land (F_2 \lor F_3) \Leftrightarrow (F_1 \land F_2) \lor (F_1 \land F_3) \end{array} \right\} \textit{dist}$$

Convert F : $(Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \rightarrow R_2)$ into DNF

$$\begin{array}{l} (Q_1 \lor \neg \neg R_1) \land (\neg Q_2 \to R_2) \\ \Leftrightarrow (Q_1 \lor R_1) \land (Q_2 \lor R_2) & \text{in NNF} \\ \Leftrightarrow (Q_1 \land (Q_2 \lor R_2)) \lor (R_1 \land (Q_2 \lor R_2)) & \text{dist} \\ \Leftrightarrow (Q_1 \land Q_2) \lor (Q_1 \land R_2) \lor (R_1 \land Q_2) \lor (R_1 \land R_2) & \text{dist} \end{array}$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$\bigwedge_{i} \bigvee_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$(F_1 \land F_2) \lor F_3 \Leftrightarrow (F_1 \lor F_3) \land (F_2 \lor F_3) F_1 \lor (F_2 \land F_3) \Leftrightarrow (F_1 \lor F_2) \land (F_1 \lor F_3)$$

A disjunction of literals $P_1 \lor P_2 \lor \neg P_3$ is called a clause. For brevity we write it as set: $\{P_1, P_2, \overline{P_3}\}$. A formula in CNF is a set of clauses (a set of sets of literals).

Definition (Equisatisfiability)

F and F' are equisatisfiable, iff

F is satisfiable if and only if F' is satisfiable

Every formula is equisatifiable to either \top or \bot . There is a efficient conversion of F to F' where

- F' is in CNF and
- F and F' are equisatisfiable

Note: efficient means polynomial in the size of F.

Basic Idea:

- Introduce a new variable P_G for every subformula G; unless G is already an atom.
- For each subformula $G : G_1 \circ G_2$ produce a small formula $P_G \leftrightarrow P_{G_1} \circ P_{G_2}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$P_F \land \bigwedge_G CNF(P_G \leftrightarrow P_{G_1} \circ P_{G_2})$$

is equisatisfiable to F.

The number of subformulae is linear in the size of F. The time to convert one small formula is constant!

Example: CNF

Convert $F : P \lor Q \to P \land \neg R$ to CNF. Introduce new variables: P_F , $P_{P\lor Q}$, $P_{P\land\neg R}$, $P_{\neg R}$. Create new formulae and convert them to CNF separately:

•
$$P_F \leftrightarrow (P_{P \lor Q} \rightarrow P_{P \land \neg R})$$
 in CNF:
 $F_1 : \{\{\overline{P_F}, \overline{P_{P \lor Q}}, P_{P \land \neg R}\}, \{P_F, P_{P \lor Q}\}, \{P_F, \overline{P_{P \land \neg R}}\}\}$
• $P_{P \lor Q} \leftrightarrow P \lor Q$ in CNF:
 $F_2 : \{\{\overline{P_{P \lor Q}}, P \lor Q\}, \{P_{P \lor Q}, \overline{P}\}, \{P_{P \lor Q}, \overline{Q}\}\}$
• $P_{P \land \neg R} \leftrightarrow P \land P_{\neg R}$ in CNF:
 $F_3 : \{\{\overline{P_{P \land \neg R}} \lor P\}, \{\overline{P_{P \land \neg R}}, P_{\neg R}\}, \{P_{P \land \neg R}, \overline{P}, \overline{P_{\neg R}}\}\}$
• $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_4 : \{\{\overline{P_{\neg R}}, \overline{R}\}, \{P_{\neg R}, R\}\}$

 $\{\{P_F\}\} \cup F_1 \cup F_2 \cup F_3 \cup F_4 \text{ is in CNF and equisatisfiable to } F.$

- Algorithm to decide PL formulae in CNF.
- Published by Davis, Logemann, Loveland (1962).
- Often miscited as Davis, Putnam (1960), which describes a different algorithm.

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

```
let rec DPLL F =

let F' = PROP F in

let F'' = PLP F' in

if F'' = \top then true

else if F'' = \bot then false

else

let P = CHOOSE vars(F'') in

(DPLL F''\{P \mapsto \top\}) \lor (DPLL F''\{P \mapsto \bot\})
```

FREIBURG

UNI

Unit Propagation (PROP)

If a clause contains one literal ℓ ,

- Set ℓ to \top .
- Remove all clauses containing ℓ .
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$\frac{\ell \quad \neg \ell \lor C}{C} \leftarrow \mathsf{clause}$$

Pure Literal Propagation (PLP)

If *P* occurs only positive (without negation), set it to \top . If *P* occurs only negative set it to \bot .

Example

UNI

$$F : (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

Branching on Q

$$F\{Q \mapsto \top\} : (R) \land (\neg R) \land (P \lor \neg R)$$

By unit resolution

$$\frac{R \quad (\neg R)}{\perp}$$

 $F\{Q \mapsto \top\} = \bot \Rightarrow false$

On the other branch

$$\begin{array}{rcl} F\{Q & \mapsto & \bot\} : (\neg P \lor R) \\ F\{Q & \mapsto & \bot, \ R & \mapsto & \top, \ P & \mapsto & \bot\} & = & \top \Rightarrow \ \mathsf{true} \end{array}$$

F is satisfiable with satisfying interpretation

 $I \ : \ \{P \ \mapsto \ \mathsf{false}, \ Q \ \mapsto \ \mathsf{false}, \ R \ \mapsto \ \mathsf{true}\}$

Example

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg (C \leftrightarrow B)$

In CNF:

- $\{\overline{A}, \overline{D}\}, \{A, D\}$
- $\{\overline{B}, \overline{A}\}, \{B, A\}$
- $\{\overline{C},\overline{A}\}, \{C,A\}$
- $\{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}$

UNI FREIBURG Solving Knights and Knaves

$$\begin{aligned} F \ : \ \{\{\overline{A},\overline{D}\},\{A,D\},\{\overline{B},\overline{A}\},\{B,A\},\{\overline{C},\overline{A}\},\{C,A\},\\ \{\overline{D},\overline{C},\overline{B}\},\{\overline{D},C,B\},\{D,\overline{C},B\},\{D,C,\overline{B}\}\} \end{aligned}$$

PROP and PLP are not applicable. Decide on A:

 $F\{A \mapsto \bot\} : \{\{D\}, \{B\}, \{C\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$ By PROP we get:

$$F\{A \mapsto \bot, D \mapsto \top, B \mapsto \top, C \mapsto \top\} : \bot$$

Unsatisfiable! Now set A to \top :

 $F\{A \mapsto \top\} : \{\{\overline{D}\}, \{\overline{B}\}, \{\overline{C}\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$ By prop we get:

$$F\{A \mapsto \top, D \mapsto \bot, B \mapsto \bot, C \mapsto \bot\} : \top$$

Satisfying assignment!

Jochen Hoenicke (Software Engineering)

Consider the following problem:

$$\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\}, \dots, \{A_n, B_n\}, \{\overline{P_{n-1}}, \overline{A_n}, P_n\}, \{\overline{P_{n-1}}, \overline{B_n}, P_n\}, \{P_0\}, \{\overline{P_n}\}\}$$

For some literal orderings, we need exponentially many steps. Note, that

$$\{\{A_i, B_i\}, \{\overline{P_{i-1}}, \overline{A_i}, P_i\}, \{\overline{P_{i-1}}, \overline{B_i}, P_i\}\} \Rightarrow \{\{\overline{P_{i-1}}, P_i\}\}$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Do not change the clause set, but only assign literals (as global variables). When you assign true to a literal ℓ , also assign false to $\overline{\ell}$. For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a <u>unit clause</u> if all but one literals are assigned false and the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a unit clause.

Explain unsatisfiability of partial assignment by conflict clause and learn it!

PREIBURG

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we remember the conflict clause.
- If variable in conflict was derived by unit propagation use the resolution rule to generate a new conflict clause.

$$\frac{\ell \lor C_1 \quad \neg \ell \lor C_2}{C_1 \lor C_2}$$
 (resolution rule)

• If variable in conflict was derived by decision, use learned conflict as unit clause

We describe DPLL a set of rules modifying a configuration. A configuration is a triple

$$\langle M, F, C \rangle$$
,

where

- *M* (model) is a sequence of literals (that are currently set to true) annotated with □ for decisions or a clause for unit propagation.
- *F* (formula) is a formula in CNF, i. e., a set of clauses where each clause is a set of literals.
- C (conflict) is either \top or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not\models C$. Thus, a conflict clause shows $M \not\models F$.

FREIBURG

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,

Explain $\frac{\langle M, F, C \cup \{\overline{\ell}\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle} \quad \text{where } \overline{\ell} \notin C, \ \ell^{C_\ell} \text{ in } M, \\ \text{and } C_\ell = \{\ell_1, \dots, \ell_k, \ell\}.$

Here, $\ell^{C_{\ell}}$ in M means that the literal ℓ occurs in M annotated with the clause C_{ℓ} .

Example: for $C_1 = \{P_1\}, C_2 = \{P_3, \overline{P_4}\}, M = P_1^{C_1} \overline{P_3}^{\Box} \overline{P_2}^{\Box} \overline{P_4}^{C_2}, F = \{C_1, C_2\}, \text{ and } C = \{P_2\} \text{ the transition}$

$$\langle M, F, \{P_2, P_4\} \rangle \longrightarrow \langle M, F, \{P_2, P_3\} \rangle$$

is possible.

Rules for CDCL (Conflict Driven Clause Learning)

Decide $\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell^{\Box}, F, \top \rangle}$ Propagate $\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell^{C_{\ell}}, F, \top \rangle}$ Conflict $\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$ Explain $\frac{\langle M, F, C \cup \{\overline{\ell}\}\rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\}\rangle}$ Learn $\frac{\langle M, F, C \rangle}{\langle M, F \cup \{C\}, C \rangle}$ Back $\frac{\langle M, F, C_{\ell} \rangle}{\langle M' \cdot \ell^{C_{\ell}} F \top \rangle}$

where $\ell \in lit(F), \ell, \overline{\ell}$ in M

where $C_{\ell} = \{\ell_1, ..., \ell_k, \ell\} \in F$ with $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in $M, \ell, \overline{\ell}$ in M.

JNI FREIBURG

where $\{\ell_1, \ldots, \ell_k\} \in F$ and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M.

where $\overline{\ell} \notin C$, $\ell^{C_{\ell}}$ in M, and $C_{\ell} = \{\ell_1, \dots, \ell_k, \ell\}.$

where $C \neq \top$, $C \notin F$.

where $C_{\ell} = \{\ell_1, ..., \ell_k, \ell\} \in F$, $M = M' \cdot \ell'^{\Box} \cdots$ and $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in $M', \overline{\ell}$ in M'.

Running DPLL with Learning

A run of DPLL is a maximal sequence of configurations

$$\langle M_0, F_0, C_0 \rangle \rightarrow \langle M_1, F_1, C_1 \rangle \rightarrow \ldots$$

starting with $M_0 = \epsilon$, F the input formula in CNF, and $C_0 = \top$, and where each transition follows one of the six rules.

If the run ends with $\emptyset \in F$, the formula is unsatisfiable. Otherwise it is satisfiable and the last M gives an interpretation for the input formula F.

Example: Knights and Knaves

 $F = \{C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9, C_{10}\}$ with $C_1 = \{\overline{A}, \overline{D}\}$, $C_2 = \{A, D\}, C_3 = \{\overline{B}, \overline{A}\}, C_4 = \{B, A\}, C_5 = \{\overline{C}, \overline{A}\}, C_6 = \{C, A\}, C_$ $C_7 = \{\overline{D}, \overline{C}, \overline{B}\}, C_8 = \{\overline{D}, C, B\}, C_9 = \{D, \overline{C}, B\}, C_{10} = \{D, C, \overline{B}\}.$ $\langle \epsilon, F, \top \rangle \xrightarrow{\text{Decide}} \langle \overline{A}^{\Box}, F, \top \rangle \xrightarrow{\text{Propagate}} \langle \overline{A}^{\Box} D^{C_2}, F, \top \rangle \xrightarrow{\text{Propagate}}$ $\langle \overline{A}^{\Box} D^{C_2} B^{C_4}, F, \top \rangle \xrightarrow{\mathsf{Propagate}} \langle \overline{A}^{\Box} D^{C_2} B^{C_4} C^{C_6}, F, \top \rangle \xrightarrow{\mathsf{Conflict}}$ $\langle \overline{A}^{\Box} D^{C_2} B^{C_4} C^{C_6}, F, \{ \overline{D}, \overline{C}, \overline{B} \} \rangle \xrightarrow{\text{Explain}}$ $\langle \overline{A}^{\Box} D^{C_2} B^{C_4} C^{C_6}, F, \{A, \overline{D}, \overline{B}\} \rangle \xrightarrow{\text{Explain}} \langle \overline{A}^{\Box} D^{C_2} B^{C_4} C^{C_6}, F, \{A, \overline{B}\} \rangle \xrightarrow{\text{Explain}}$ $\langle \overline{A}^{\Box} D^{C_2} B^{C_4} C^{C_6}, F, \{A\} \rangle \xrightarrow{\text{Learn}} \langle \overline{A}^{\Box} D^{C_2} B^{C_4} C^{C_6}, F', \{A\} \rangle \xrightarrow{\text{Back}}$ $\langle A^{\{A\}}, F', \top \rangle \stackrel{\mathsf{Propagate}}{\longrightarrow} \langle A^{\{A\}} \overline{D}^{C_1}, F', \top \rangle \stackrel{\mathsf{Propagate}}{\longrightarrow}$ $\langle A^{\{A\}}\overline{D}^{C_1}\overline{B}^{C_3}, F', \top \rangle \xrightarrow{\mathsf{Propagate}} \langle A^{\{A\}}\overline{D}^{C_1}\overline{B}^{C_3}\overline{C}^{C_5}, F', \top \rangle$ where $F' = F \cup \{A\}$.

ZW

Example: DPLL with Learning

Example: DPLL with Learning

$$P_1 \land (\neg P_2 \lor P_3) \land (\neg P_4 \lor P_3) \land (P_2 \lor P_4) \land (\neg P_1 \lor \neg P_4 \lor \neg P_3) \land (P_4 \lor \neg P_3)$$

$$\begin{split} & F = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\} \text{ with } C_{1} = \{P_{1}\}, C_{2} = \{\overline{P_{2}}, P_{3}\}, \\ & C_{3} = \{\overline{P_{4}}, P_{3}\}, C_{4} = \{P_{2}, P_{4}\}, C_{5} = \{\overline{P_{1}}, \overline{P_{4}}, \overline{P_{3}}\}, C_{6} = \{P_{4}, \overline{P_{3}}\}. \\ & \langle e, F, \top \rangle \xrightarrow{\text{Propagate}} \langle P_{1}^{C_{1}}, F, \top \rangle \xrightarrow{\text{Decide}} \langle P_{1}^{C_{1}} \overline{P_{2}}^{\Box}, F, \top \rangle \xrightarrow{\text{Propagate}} \langle P_{1}^{C_{1}} \overline{P_{2}}^{\Box}, F, \top \rangle \xrightarrow{\text{Propagate}} \langle P_{1}^{C_{1}} \overline{P_{2}}^{\Box}, P_{4}^{C_{4}} P_{3}^{C_{3}}, F, \top \rangle \xrightarrow{\text{Conflict}} \\ & \langle P_{1}^{C_{1}} \overline{P_{2}}^{\Box} P_{4}^{C_{4}} P_{3}^{C_{3}}, F, \{\overline{P_{1}}, \overline{P_{4}}, \overline{P_{3}}\} \rangle \xrightarrow{\text{Explain}} \\ & \langle P_{1}^{C_{1}} \overline{P_{2}}^{\Box} P_{4}^{C_{4}} P_{3}^{C_{3}}, F, \{\overline{P_{1}}, \overline{P_{4}}, \overline{P_{3}}\} \rangle \xrightarrow{\text{Learn}} \langle P_{1}^{C_{1}} \overline{P_{2}}^{\Box} P_{4}^{C_{4}} P_{3}^{C_{3}}, F', \{\overline{P_{1}}, \overline{P_{4}}\} \rangle \xrightarrow{\text{Back}} \\ & \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}}, F', \top \rangle \xrightarrow{\text{Propagate}} \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}}, F', \top \rangle \xrightarrow{\text{Propagate}} \\ & \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F', \top \rangle \xrightarrow{\text{Conflict}} \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{3}}, F', \{\overline{P_{1}}, \overline{P_{4}}\} \rangle \xrightarrow{\text{Explain}} \\ & \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F', \{P_{4}, \overline{P_{2}}\} \rangle \xrightarrow{\text{Explain}} \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F', \{P_{4}, \overline{P_{3}}\} \rangle \xrightarrow{\text{Explain}} \\ & \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{3}}, F', \{\overline{P_{1}}\} \rangle \xrightarrow{\text{Explain}} \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{2}}, F', \{P_{4}\} \rangle \xrightarrow{\text{Explain}} \\ & \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{3}}, F', \{\overline{P_{1}}\} \rangle \xrightarrow{\text{Explain}} \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{3}}, F', \{P_{4}\} \rangle \xrightarrow{\text{Explain}} \\ & \langle P_{1}^{C_{1}} \overline{P_{4}}^{C_{7}} P_{2}^{C_{4}} P_{3}^{C_{3}}, F' \cup \{\emptyset\}, \emptyset \rangle \text{ where } C_{7} = \{\overline{P_{1}}, \overline{P_{4}}\}, F' = F \cup \{C_{7}\}. \end{aligned}$$

Jochen Hoenicke (Software Engineering)

Theorem (Correctness of DPLL)

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL. Then F is satisfiable iff C_n is \top .

Before proving the theorem, we note some important invariants:

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\overline{\ell}$.
- If $M_i = M' \ell^{C_\ell} \cdots$, then $C_\ell = \{\ell_1, \ldots, \ell_k, \ell\}$ with $\overline{\ell_1}, \ldots, \overline{\ell_k}$ in M'and $C_\ell \in F_i$.
- Every $\ell \in C_i$ occurs negated in M_i .
- C_i is always implied by F_i .
- F is equivalent to F_i for all steps i of the computation.

Correctness proof

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.

Thus, M_n is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \dots, \ell_k, \ell\} \neq \emptyset$. Note that $\overline{\ell_1}, \dots, \overline{\ell_k}, \overline{\ell}$ in M. W.I.o.g., $\overline{\ell}$ is the last one that occurs in M. Then:

- Since Learn is not applicable, $C_n \in F_n$.
- Since Explain is not applicable $\overline{\ell}$ must be annotated with \Box .
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_n = \emptyset (= \bot)$. Since *F* implies C_n , *F* is not satisfiable.

Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence

$$\langle \epsilon, F, \top
angle \ = \ \langle M_0, F_0, C_0
angle \ \longrightarrow \ \langle M_1, F_1, C_1
angle \ \longrightarrow \ \ldots$$

terminates.

Proof of Termination

There are finitely many literals, therefore,

- finitely many clauses C,
- finitely many sequences M of literals annotated with clauses
- finitely many sets of clauses F.

Since everything is finite, it is sufficient to show that there is no cycle, by defining a partial ordering.

- We define M ≺ M' if M\$ comes lexicographically before M'\$, where ℓ^C is smaller than ℓ'[□] and \$ is considered to be the largest symbol. Example: ℓ₁^{C₁}ℓ₂<sup>C₂</sub>\$ ≺ ℓ₁^{C₁}ℓ₃<sup>C₄</sub>\$ ≺ ℓ₁^{C₁}ℓ₃[□]\$ ≺ ℓ₁^{C₁}\$
 For a sequence M = ℓ₁...ℓ_n, the conflict clauses are ordered by their
 </sup></sup>
- weight w: $w(\top) = 2^{n+1}$, $w(C) = \sum_{\ell_i \in C} 2^i$, $w(\emptyset) = 0$. The weight depends on the order in which the literals occur in M. **Example**: $\emptyset \prec_{\overline{\ell_1 \ell_2 \ell_3}} \{\ell_1, \ell_2\} \prec_{\overline{\ell_1 \ell_2 \ell_3}} \{\ell_3\} \prec_{\overline{\ell_1 \ell_2 \ell_3}} \{\ell_2, \ell_3\} \prec_{\overline{\ell_1 \ell_2 \ell_3}} \top$

These are well-orderings, because the domains are finite.

Proof of Termination (cont.)

Termination Proof: Every rule application decreases the value of $\langle M_i, F_i, C_i \rangle$ according to the well-ordering:

$$\langle M, F, C \rangle \prec \langle M', F', C' \rangle$$
, iff
$$\begin{cases} M \prec M', \\ \text{or } M = M', C \prec_M C', \\ \text{or } M = M', C = C', F \supsetneq F'. \end{cases}$$

Hence there is no cycle and the DPLL algorithm terminates.

FREIBURG

 $\{\{A_1, B_1\}, \{\overline{P_0}, \overline{A_1}, P_1\}, \{\overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{\overline{P_1}, \overline{A_2}, P_2\}, \{\overline{P_1}, \overline{B_2}, P_2\}, \\ \dots, \{A_n, B_n\}, \{\overline{P_{n-1}}, \overline{A_n}, P_n\}, \{\overline{P_{n-1}}, \overline{B_n}, P_n\}, \{P_0\}, \{\overline{P_n}\}\}$

- Unit propagation sets P_0 and $\overline{P_n}$ to true.
- Decide, e.g. A_1 , then propagate $\overline{P_1}$
- Continue until A_{n-1} , then propagate $\overline{P_{n-1}}, \overline{A_n}$ and $\overline{B_n}$
- Conflict: $\{A_n, B_n\}$.
- Explain computes new conflict clause: $\{\overline{P_{n-1}}, P_n\}$.
- Conflict clause does not depend on A_1, \ldots, A_{n-1} and can be used again.

DPLL (without Learning)

Jochen Hoenicke (Software Engineering)

UNI FREIBURG

DPLL with CDCL

UNI FREIBURG

- Pure Literal Propagation is unnecessary:
 A pure literal is always chosen right and never causes a conflict.
 Madam SAT scheme use this are assume but differ in
- Modern SAT-solvers use this procedure but differ in
 - heuristics to choose literals/clauses.
 - efficient data structures to find unit clauses.
 - better conflict resolution to minimize learned clauses.
 - restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
 - Truth table
 - Semantic Argument
 - DPLL
- Run-time of all presented algorithms is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.