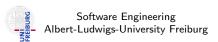
Decision Procedures

Jochen Hoenicke



Winter Term 2019/2020

Theories

In first-order logic function symbols have no predefined meaning:

The formula 1 + 1 = 3 is satisfiable.

We want to fix the meaning for some function symbols. Examples:

- Equality theory
- Theory of natural numbers
- Theory of rational numbers
- Theory of arrays or lists

Definition (First-order theory)

A First-order theory *T* consists of

- ullet A Signature Σ set of constant, function, and predicate symbols
- A set of axioms A_T set of closed (no free variables) Σ -formulae

A Σ -formula is a formula constructed of constants, functions, and predicate symbols from Σ , and variables, logical connectives, and quantifiers

- The symbols of Σ are just symbols without prior meaning
- The axioms of T provide their meaning

Theory of Equality T_E

Signature
$$\Sigma_{\mathsf{E}}: \{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}$$

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_E :

- for each positive integer n and n-ary function symbol f, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ (congruence)
- for each positive integer n and n-ary predicate symbol p, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \to (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (equivalence)

Congruence and Equivalence are axiom schemata.

- for each positive integer n and n-ary function symbol f, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ (congruence)
- **③** for each positive integer n and n-ary predicate symbol p, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i \rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (equivalence)

For every function symbol there is an instance of the congruence axiom schemata.

Example: Congruence axiom for binary function f_2 : $\forall x_1, x_2, y_1, y_2. x_1 = y_1 \land x_2 = y_2 \rightarrow f_2(x_1, x_2) = f_2(y_1, y_2)$

 $A_{T_{\rm E}}$ contains an infinite number of these axioms.

T-Validity and *T*-Satisfiability

Definition (T-interpretation)

An interpretation I is a T-interpretation, if it satisfies all the axioms of T.

Definition (*T*-valid)

A Σ -formula F is valid in theory T (T-valid, also $T \models F$), if every T-interpretation satisfies F.

Definition (*T*-satisfiable)

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation that satisfies F

Definition (*T*-equivalent)

Two Σ -formulae F_1 and F_2 are equivalent in T (T-equivalent), if $F_1 \leftrightarrow F_2$ is T-valid,

Semantic argument method can be used for T_E

Prove

$$F: a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$$
 T_{E} -valid.

Suppose not; then there exists a T_{E} -interpretation I such that $I \not\models F$. Then.

1.
$$I \not\models F$$
 assumption
2. $I \models a = b \land b = c$ 1, \rightarrow
3. $I \not\models g(f(a), b) = g(f(c), a)$ 1, \rightarrow
4. $I \models \forall x, y, z. \ x = y \land y = z \rightarrow x = z$ transitivity
5. $I \models a = b \land b = c \rightarrow a = c$ 4, $3 \times \forall \{x \mapsto a, y \mapsto b, z \mapsto c\}$
6a $I \not\models a = b \land b = c$ 5, \rightarrow
7a $I \models \bot$ 2 and 6a contradictory
6b. $I \models a = c$ 4, $5, (5, \rightarrow)$ (congruence), $2 \times \forall$
8ba. $I \not\models a = c \rightarrow f(a) = f(c)$ (congruence), $2 \times \forall$
8bb. $I \models f(a) = f(c)$ 7b, \rightarrow
9bb. $I \models a = b$ 2, \land
10bb. $I \models a = b \rightarrow b = a$ (symmetry), $2 \times \forall$
11bbb. $I \models b = a$ 10bb, \rightarrow
12bbb. $I \models f(a) = f(c) \land b = a \rightarrow g(f(a), b) = g(f(c), a)$ (congruence), $4 \times \forall$
3bb. 11bbb. 12bbb

3 and 13 are contradictory. Thus, F is T_E -valid.

Decidability of T_E

Is it possible to decide T_E -validity?

 T_E -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula T_E -validity is decidable.

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \models F$ (T-validity) is decidable for every Σ -formula F,

i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.

A fragment of T is decidable if $T \models F$ is decidable for every Σ -formula F in the fragment.

```
Natural numbers \mathbb{N}=\{0,1,2,\cdots\} Integers \mathbb{Z}=\{\cdots,-2,-1,0,1,2,\cdots\}
```

Three variations:

- Peano arithmetic T_{PA}: natural numbers with addition and multiplication
- Presburger arithmetic T_N : natural numbers with addition
- Theory of integers $T_{\mathbb{Z}}$: integers with +,-,>

Peano Arithmetic T_{PA} (first-order arithmetic)

Signature:
$$\Sigma_{PA}$$
: $\{0, 1, +, \cdot, =\}$

Axioms of T_{PA} : axioms of T_E ,

1
$$\forall x$$
. $\neg (x + 1 = 0)$

$$\forall x, y. \ x + 1 = y + 1 \rightarrow x = y$$

$$\forall x, y. \ x + (y + 1) = (x + y) + 1$$

Line 3 is an axiom schema.

$$3x + 5 = 2y$$
 can be written using Σ_{PA} as

$$x + x + x + 1 + 1 + 1 + 1 + 1 = y + y$$

We can define
$$>$$
 and \geq : $3x + 5 > 2y$ write as $\exists z. \ z \neq 0 \land 3x + 5 = 2y + z$ $3x + 5 \geq 2y$ write as $\exists z. \ 3x + 5 = 2y + z$

Examples for valid formulae:

- Pythagorean Theorem is T_{PA} -valid $\exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land xx + yy = zz$
- Fermat's Last Theorem is T_{PA} -valid (Andrew Wiles, 1994) $\forall n. \ n > 2 \rightarrow \neg \exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land x^n + y^n = z^n$

Expressiveness of Peano Arithmetic (2)

UNI

In Fermat's theorem we used x^n , which is not a valid term in Σ_{PA} . However, there is the Σ_{PA} -formula EXP[x, n, r] with

$$\begin{aligned} \textit{EXP}[x, n, r] : \; \exists d, m. \; (\exists z. \; d = (m+1)z + 1) \land \\ (\forall i, r_1. \; i < n \land r_1 < m \land (\exists z. \; d = ((i+1)m+1)z + r_1) \rightarrow \\ r_1x < m \land (\exists z. \; d = ((i+2)m+1)z + r_1 \cdot x)) \land \\ r < m \land (\exists z. \; d = ((n+1)m+1)z + r) \end{aligned}$$

Fermat's theorem can be stated as:

$$\forall n. n > 2 \rightarrow \neg \exists x, y, z, rx, ry. x \neq 0 \land y \neq 0 \land z \neq 0 \land EXP[x, n, rx] \land EXP[y, n, ry] \land EXP[z, n, rx + ry]$$

Decidability of Peano Arithmetic

ON FREIBUR

Gödel showed that for every recursive function $f: \mathbb{N}^n \to \mathbb{N}$ there is a Σ_{PA} -formula $F[x_1, \dots, x_n, r]$ with

$$F[x_1,\ldots,x_n,r]\leftrightarrow r=f(x_1,\ldots,x_n)$$

 T_{PA} is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem

Peano arithmetic T_{PA} does not capture true arithmetic:

There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid.

The reason: T_{PA} actually admits nonstandard interpretations

For decidability: no multiplication

Presburger Arithmetic $T_{\mathbb{N}}$

Signature:
$$\Sigma_{\mathbb{N}}$$
 : $\{0, 1, +, =\}$ no multiplication!

Axioms of $T_{\mathbb{N}}$: axioms of T_{E} ,

5
$$\forall x, y, x + (y + 1) = (x + y) + 1$$
 (plus successor)

3 is an axiom schema.

 $T_{\mathbb{N}}$ -satisfiability and $T_{\mathbb{N}}$ -validity are decidable. (Presburger 1929)

Theory of Integers $T_{\mathbb{Z}}$

Signature:

$$\Sigma_{\mathbb{Z}} \ : \ \{\ldots,-2,-1,0,\ 1,\ 2,\ \ldots,-3\cdot,-2\cdot,\ 2\cdot,\ 3\cdot,\ \ldots,\ +,\ -,\ =,\ >\}$$
 where

- ..., -2, -1, 0, 1, 2, ... are constants
- ..., $-3\cdot$, $-2\cdot$, $2\cdot$, $3\cdot$, ... are unary functions (intended meaning: $2 \cdot x$ is x + x)
- \bullet +, -, =, > have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.
- For every $\Sigma_{\mathbb{N}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$ -formula.

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equisatisfiable iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable

Example: The $\Sigma_{\mathbb{N}}$ -formula

$$\forall x. \ \exists y. \ x = y + 1$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

$$\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1.$$

Consider the $\Sigma_{\mathbb{Z}}$ -formula

$$F_0: \forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4$$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0

$$F_{1}: \begin{array}{c} \forall w_{p}, w_{n}, x_{p}, x_{n}. \ \exists y_{p}, y_{n}, z_{p}, z_{n}. \\ (x_{p} - x_{n}) + 2(y_{p} - y_{n}) - (z_{p} - z_{n}) - 7 > -3(w_{p} - w_{n}) + 4 \end{array}$$

Eliminate - by moving to the other side of >

$$F_2: \begin{array}{c} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 7 + 3w_n + 4 \end{array}$$

Eliminate > and numbers:

which is a $\Sigma_{\mathbb{N}}$ -formula equisatisfiable to F_0 .

To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:

- transform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula $\neg G$,
- decide $T_{\mathbb{N}}$ -validity of G.

Rationals and Reals

$$\Sigma = \{0, 1, +, -, \cdot, =, \geq\}$$

• Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2 \quad \Rightarrow \quad x = \pm \sqrt{2}$$

ullet Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$\underbrace{2x}_{x+x} = 7 \quad \Rightarrow \quad x = \frac{7}{2}$$

Note: Strict inequality

$$\forall x, y. \exists z. x + y > z$$

can be expressed as

$$\forall x, y. \exists z. \neg (x + y = z) \land x + y \geq z$$

Theory of Reals $T_{\mathbb{R}}$

126 / 376

Signature: $\Sigma_{\mathbb{R}}$: $\{0,\ 1,\ +,\ -,\ \cdot,\ =,\ \geq\}$ with multiplication.

Axioms of $T_{\mathbb{R}}$: axioms of T_E ,

$$\forall x, y, z. (x + y) + z = x + (y + z)$$

3
$$\forall x. \ x + 0 = x$$

4
$$\forall x. \ x + (-x) = 0$$

$$\bigcirc$$
 $\forall x. x \cdot 1 = x$

$$\forall x, y, z. \ x \geq y \land y \geq z \rightarrow x \geq z$$

$$\forall x, v. \ x > v \lor v > x$$

$$\forall x, y, z. \ x > y \rightarrow x + z > y + z$$

$$\forall x, y. \ x > 0 \land y > 0 \rightarrow x \cdot y > 0$$

$$\bullet$$
 for each odd integer n ,

$$\forall x_0, \dots, x_{n-1}. \ \exists y. \ y^n + x_{n-1}y^{n-1} \dots + x_1y + x_0 = 0$$

(+ associativity)

(+ identity)

(+ inverse)

(· identity)

(· inverse)

(distributivity)

(antisymmetry)

(transitivity)

(+ ordered)

(· ordered)

(square root)

(totality)

(separate identies)

(· associativity)(· commutativity)

(+ commutativity)

Example

 $F: \forall x. \ x \cdot 0 = 0 \text{ is } T_{\mathbb{R}}\text{-valid.}$

1.
$$I \not\models \forall x. \ x \cdot 0 = 0$$

2. $I \not\models a \cdot 0 = 0$

3.
$$I \models a = a$$

4.
$$I \models (0+0) = 0$$

5.
$$I \models a \cdot (0+0) = a \cdot 0$$

6.
$$I \models a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

7.
$$I \models a \cdot 0 + a \cdot 0 = a \cdot (0 + 0)$$

8.
$$I \models a \cdot 0 + a \cdot 0 = a \cdot 0$$

9.
$$I \models (a \cdot 0 + a \cdot 0) + -(a \cdot 0) = a \cdot 0 + -(a \cdot 0)$$

10.
$$I \models a \cdot 0 + -(a \cdot 0) = 0$$

11.
$$I \models (a \cdot 0 + a \cdot 0) + -(a \cdot 0) = a \cdot 0 + (a \cdot 0 + -(a \cdot 0))$$

12.
$$I \models a \cdot 0 + (a \cdot 0 + -(a \cdot 0)) = a \cdot 0 + 0$$

13.
$$I \models a \cdot 0 + 0 = a \cdot 0$$

14.
$$I \models (a \cdot 0 + a \cdot 0) + -(a \cdot 0) = a \cdot 0$$

15.
$$I \models a \cdot 0 = (a \cdot 0 + a \cdot 0) + -(a \cdot 0)$$

16.
$$I \models a \cdot 0 = 0$$

17.
$$I \models \bot$$

$$\forall$$
, a fresh

reflexivity,
$$\{x \mapsto a\}$$

+-identity $\{x \mapsto 0\}$

Example

 $F: \forall a, b, c. \ b^2 - 4ac \ge 0 \leftrightarrow \exists x. \ ax^2 + bx + c = 0 \text{ is } T_{\mathbb{R}}\text{-valid.}$

As usual: x^2 abbreviates $x \cdot x$, we omit \cdot , e.g. in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a - b abbreviates a + (-b).

- 1. $I \not\models F$
- 2a. $I \models bb 4ac > 0$
- 3a. $I \not\models \exists x.axx + bx + c = 0$
- 4a. $I \models \exists y. bb 4ac = y^2 \lor bb 4ac = -y^2$
- 5a. $I \models d^2 = bb 4ac \lor d^2 = -(bb 4ac)$
- 6a. $I \models 2a \cdot e = 1$
- 7a. $I \not\models a((-b+d)e)^2 + b(-b+d)e + c = 0$
- 8a. $I \not\models ab^2e^2 2abde^2 + ad^2e^2 b^2e + bde + c = 0$
- 9a. $1 \models d^2 > 0$
- 10a. $I \models dd = bb 4ac$
- 11a. $I \not\models ab^2e^2 bde + a(b^2 4ac)e^2 b^2e + bde + c = 0$
- 12*a*. $I \not\models 0 = 0$
- 13*a*. *I* |= ⊥

assumption

- $1,\leftrightarrow$
- $1, \leftrightarrow$
- square root, \forall
- 2, ∃
- \cdot inverse, \forall , \exists
- 6a, ∃

distributivity

see exercise

∨ on 4a, 2a, 9a

8a,6a, 10a, congruence 11a, distributivity, inverse 12a, reflexivity

$$F: \forall a, b, c. \ bb-4ac \ge 0 \leftrightarrow \exists x. \ axx + bx + c = 0 \text{ is } T_{\mathbb{R}}\text{-valid}.$$

As usual: x^2 abbreviates $x \cdot x$, we omit \cdot , e.g., in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a - b abbreviates a + (-b).

1.
$$I \not\models F$$

2b.
$$I \not\models bb - 4ac \ge 0$$

3b.
$$I \models \exists x.axx + bx + c = 0$$

4*b*.
$$I \models aff + bf + c = 0$$

5b.
$$I \models (2af + b)^2 = bb - 4ac$$

6b.
$$I \models (2af + b)^2 \ge 0$$

7b.
$$I \models bb - 4ac \ge 0$$

assumption

$$1,\leftrightarrow$$

$$1,\leftrightarrow$$

field axioms,
$$T_E$$

Decidability of $T_{\mathbb{R}}$

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity: $O(2^{2^{kn}})$

Theory of Rationals $T_{\mathbb{O}}$

REIBURG

Signature: $\Sigma_{\mathbb{Q}}$: $\{0,\ 1,\ +,\ -,\ =,\ \geq\}$ no multiplication!

Axioms of $T_{\mathbb{Q}}$: axioms of T_E ,

③
$$\forall x. \ x + 0 = x$$

$$0 1 \ge 0 \land 1 \ne 0$$

$$\bigcirc$$
 For every positive integer n :

$$\forall x. \; \exists y. \; x = \underbrace{y + \cdots + y}_{n}$$

(+ associativity)

(+ inverse)

(one)

(antisymmetry)

(transitivity)

(totality)

(+ ordered)

(divisible)

Rational coefficients are simple to express in $T_{\mathbb{Q}}$

Example: Rewrite

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

as the $\Sigma_{\mathbb{O}}$ -formula

$$x + x + x + y + y + y + y \ge \underbrace{1 + 1 + \dots + 1}_{24}$$

 $T_{\mathbb{Q}}$ is decidable

Efficient algorithm for quantifier free fragment

- Data Structures are tuples of variables.
 Like struct in C, record in Pascal.
- In Recursive Data Structures, one of the tuple elements can be the data structure again.
 Linked lists or trees.

```
\Sigma_{cons}: \ \{cons, \ car, \ cdr, \ atom, \ =\}
```

where

$$cons(a, b)$$
 – list constructed by adding a in front of list b $car(x)$ – left projector of x : $car(cons(a, b)) = a$ $cdr(x)$ – right projector of x : $cdr(cons(a, b)) = b$ atom (x) – true iff x is a single-element list

Axioms: The axioms of A_{T_E} plus

•
$$\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$$
 (left projection)

•
$$\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$$
 (right projection)

•
$$\forall x. \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x$$
 (construction)

•
$$\forall x, y. \neg atom(cons(x, y))$$
 (atom)

- 1 The axioms of reflexivity, symmetry, and transitivity of =
- Congruence axioms

$$\forall x_1, x_2, y_1, y_2. \ x_1 = x_2 \land y_1 = y_2 \to cons(x_1, y_1) = cons(x_2, y_2)$$

 $\forall x, y. \ x = y \to car(x) = car(y)$
 $\forall x, y. \ x = y \to cdr(x) = cdr(y)$

Equivalence axiom

$$\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

Example: T_{cons} -Validity

We argue that the following Σ_{cons} -formula F is T_{cons} -valid:

$$F: \begin{array}{ccc} \mathsf{car}(a) = \mathsf{car}(b) \land \mathsf{cdr}(a) = \mathsf{cdr}(b) \land \neg \mathsf{atom}(a) \land \neg \mathsf{atom}(b) \\ \rightarrow & a = b \end{array}$$

1.
$$I \not\models F$$
 assumption

2.
$$I \models \operatorname{car}(a) = \operatorname{car}(b)$$
 1, \rightarrow , \land

3.
$$I \models \operatorname{cdr}(a) = \operatorname{cdr}(b)$$
 1, \rightarrow , \land

4.
$$I \models \neg atom(a)$$
 1, \rightarrow , \land

5.
$$I \models \neg atom(b)$$
 1, \rightarrow , \land

6.
$$l \not\models a = b$$
 1, \rightarrow

7.
$$I \models cons(car(a), cdr(a)) = cons(car(b), cdr(b))$$

8.
$$I \models cons(car(a), cdr(a)) = a$$
 4, (construction)

9.
$$I \models cons(car(b), cdr(b)) = b$$
 5, (construction)

10.
$$I \models a = b$$
 7, 8, 9, (transitivity)

Decidability of T_{cons}

 $T_{\rm cons}$ is undecidable Quantifier-free fragment of $T_{\rm cons}$ is efficiently decidable

Theory of Arrays T_A


```
Signature: \Sigma_A: \{\cdot[\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle, =\}, where
```

- a[i] binary function –
 read array a at index i ("read(a,i)")
- a⟨i ⊲ v⟩ ternary function –
 write value v to index i of array a ("write(a,i,e)")

Axioms

- lacktriangledown the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}

Equality in T_A

Note: = is only defined for array elements

$$a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

not T_A -valid, but

$$a[i] = e \rightarrow \forall j. \ a\langle i \triangleleft e \rangle[j] = a[j] ,$$

is T_A -valid.

Also

$$a = b \rightarrow a[i] = b[i]$$

is not T_A -valid: We only axiomatized a restricted congruence.

 T_A is undecidable Quantifier-free fragment of T_A is decidable

Signature and axioms of $\mathcal{T}_A^=$ are the same as \mathcal{T}_A , with one additional axiom

$$\forall a, b. \ (\forall i. \ a[i] = b[i]) \leftrightarrow a = b \ \ (extensionality)$$

Example:

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

is $T_A^=$ -valid.

 $T_{\rm A}^{=}$ is undecidable

Quantifier-free fragment of $\mathcal{T}_{\mathsf{A}}^{=}$ is decidable

How do we show that

$$1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$$

is $(T_{\mathsf{E}} \cup T_{\mathbb{Z}})$ -unsatisfiable?

Or how do we prove properties about an array of integers, or a list of reals . . . ?

Given theories T_1 and T_2 such that

$$\Sigma_1 \ \cap \ \Sigma_2 \quad = \quad \{=\}$$

The combined theory $T_1 \cup T_2$ has

- ullet signature $\Sigma_1 \ \cup \ \Sigma_2$
- axioms $A_1 \cup A_2$

 ${\sf qff} = {\sf quantifier}\text{-}{\sf free} \ {\sf fragment}$

Nelson & Oppen showed that

if satisfiability of qff of T_1 is decidable, satisfiability of qff of T_2 is decidable, and certain technical requirements are met then satisfiability of qff of $T_1 \cup T_2$ is decidable.

 $T_{\mathsf{cons}}^{=}: T_{\mathsf{E}} \cup T_{\mathsf{cons}}$

Signature: $\Sigma_{\mathsf{E}} \ \cup \ \Sigma_{\mathsf{cons}}$

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_E and T_{cons}

 $T_{\text{cons}}^{=}$ is undecidable Quantifier-free fragment of $T_{\text{cons}}^{=}$ is efficiently decidable

We argue that the following $\Sigma_{cons}^{=}$ -formula F is $T_{cons}^{=}$ -valid:

$$F: \begin{array}{c} \mathsf{car}(a) = \mathsf{car}(b) \land \mathsf{cdr}(a) = \mathsf{cdr}(b) \land \neg \mathsf{atom}(a) \land \neg \mathsf{atom}(b) \\ \rightarrow f(a) = f(b) \end{array}$$

1.
$$I \not\models F$$
 assumption

2.
$$I \models \operatorname{car}(a) = \operatorname{car}(b)$$
 1, \rightarrow , \land

3.
$$I \models \operatorname{cdr}(a) = \operatorname{cdr}(b)$$
 1, \rightarrow , \land

4.
$$I \models \neg atom(a)$$
 1, \rightarrow , \land
5. $I \models \neg atom(b)$ 1. \rightarrow . \land

5.
$$I \models \neg atom(b)$$
 1, \rightarrow , \land
6. $I \not\models f(a) = f(b)$ 1. \rightarrow

7.
$$I \models cons(car(a), cdr(a)) = cons(car(b), cdr(b))$$

7.
$$T = \text{cons(car}(a), \text{cur}(a)) = \text{cons(car}(b), \text{cur}(b))$$

2, 3, (congruence)

8.
$$I \models cons(car(a), cdr(a)) = a$$
 4, (construction)

9.
$$I \models cons(car(b), cdr(b)) = b$$
 5, (construction)

10.
$$I \models a = b$$
 7, 8, 9, (transitivity)

11.
$$I \models f(a) = f(b)$$
 10, (congruence)

Lines 6 and 11 are contradictory. Therefore, F is $T_{cons}^{=}$ -valid.

First-Order Theories

	Theory	Decidable	QFF Dec.
T_E	Equality	_	✓
T_{PA}	Peano Arithmetic	_	_
$\mathcal{T}_{\mathbb{N}}$	Presburger Arithmetic	\checkmark	✓
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	\checkmark	✓
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	\checkmark	✓
$\mathcal{T}_{\mathbb{Q}}$	Linear Rationals	\checkmark	✓
T_{cons}	Lists	_	✓
$T_{\rm cons}^{=}$	Lists with Equality	_	✓
T_{A}	Arrays	_	✓
$T_{A}^{=}$	Arrays with Extensionality	_	✓