Decision Procedures

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Winter Term 2019/2020

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020

1/376

Theory of Arrays

Arrays: Quantifier-free Fragment of Tx g
-5
Xa {[]7 < < '>7 :}7
where
@ a[i] is a binary function representing
read of array a at index i;
@ a(i < v) is a ternary function representing
write of value v to index i of array a;
@ = is a binary predicate. It is not used on arrays.
Axioms of Tx:
@ axioms of (reflexivity), (symmetry), and (transitivity) of Tg
Q Va,i,j. i =j— a[i] = a[j] (array congruence)
Q@ Va,v,ij.i=j—aliav)[j] =v (read-over-write 1)
Q Va,v,ij. i # j— a(i<v)[j] = a[Jj] (read-over-write 2)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 252 / 376

Decision Procedure for Ty g

Given quantifier-free conjunctive 2 a-formula F.
To decide the Ta-satisfiability of F:

Step 1

For every read-over-write term a(i < v)[j] in F, replace F with the formula

(i =jAFlali av)[j] = v}) V
(i #Jj A Flati av)[j] = a[j]})

Repeat until there are no more read-over-write terms.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 253 / 376

Decision Procedure for T (cont) g

Step 2

Associate array variables a with fresh function symbol f,.
Replace read terms a[i] with £3(7).

Step 3

Now F is a Tg-Formula. Decide Tg-satisfiability using the
congruence-closure algorithm for each of the disjuncts produced in Step 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 254 / 376

Example: Consider Xa-formula
F: h=jAh#hAaj] =wvAalh<v)(i<wl]# al].
F contains a read-over-write term,
a(ip < wv1)(ip < w)[j] # a[j] -
Rewrite it to F; V Fy with:

F1:i2:j/\i1:j/\i17éi2/\a[i]:v1/\V27éa[j],
F2:i27éj/\i1:j/\i17éi2/\a[j]:v1/\a(i1<v1>[j]7éa[i].

F1 does not contain any write terms, so rewrite it to
Fil:h=jAn0=jAi#bAGLYJ)=wvAv#mLJ).

The first two literals imply that /7 = i, contradicting the third literal, so
F{ is Tg-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 255 / 376

Now, we try the second case (F):
F> contains the read-over-write term a(i; < v1)[j]. Rewrite it to F3 V F4
with

F3:ilzj/\l'z#j/\l'lzj/\l'l#iz/\aU]Zvl/\Vl#aU],
F4:i17éj/\i27éj/\i1:j/\i1#igAaU]:vl/\a[i];éaU].

Rewrite the array reads to

Fs-h=jAb#jANih=jANh#ibAGLJ =wvAwu#6L3J),
Fiiii#jAb#jANiL=jAi#iAGJ =wvAfR(j) #6)).

In F3 there is a contradiction because of the final two terms. In F;, there
are two contradictions: the first and third literals contradict each other,
and the final literal is contradictory. Since F is equisatisfiable to

F{ VvV Fi Vv F;, Fis Ta-unsatisfiable.

Suppose instead that F does not contain the literal i1 # i». Is this new
formula Ta-satisfiable?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 256 / 376

Complexity of Decision Procedure for Tx g

Our algorithm has a big disadvantage. Step 1 doubles the size of the
formula:

(i = j A Flali aV)[j] = v}) Vv
(i #Jj A Fla(i av)[j] — alj]})

This can be avoided by introducing fresh variables x,;;,:

F{a(i < v)[j] = Xaijju }N
(i = J A xajjy = V)V (i # A ey = alj]))

However, this is not in the conjunctive fragment of Tg.
There is no way around:

The conjunctive fragment of Tp is NP-complete. J

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 257 / 376

Arrays and Quantifiers &

In programming languages, one often needs to express the following
concepts:

e Containment contains(a, ¢, u, €): the array a contains element e at
some index between ¢ and wu.

dil<i<uAnali]=e

o Sortedness sorted(a, ¢, u): the array a is sorted between index ¢ and
index u.

Vij. b < i <j<u—ali] < alj

e Partitioning partition(a, 1, u1, 2, u2): The array elements between (1
and wuy are smaller than all elements between ¢> and ws.

Viyjoly < i< Ay §j§u2—>a[i]§a[j]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 258 / 376

Decision Procedure for Arrays g

These concepts can only be expressed as first-order formulae with
quantifiers.

However: the general theory of arrays Ta with quantifier is not decidable.

Is there a decidable fragment of T that contains the above formulae?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 259 / 376

Example &

We want to prove validity for a formula, such as:
—contains(a,l,u,e) N\ e # f — —contains(a(j < f), ¢, u, e)
(3l <i<unalil=e)Ne#f
— (3l < i < wuAaaf)il # e).
Check satisfiability of negated formula:
(3l <i<uANalil=e)Ne# FAQEIL<i<uANa(jfaf)[i] # e).

Negation Normal Form:

(Vi > ivi > uvali] # e)Ne # FAFil < iNi < uha(j<af)[i] = e).

or the equisatisfiable formula

(Vi > iVvi>uVvalil] # e)Ne # FAL < hANib < uNha(jaf)[i] = e.

We need to handle satisfiability for universal quantifiers.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 260 / 376

Array Property Fragment of Tx g

Decidable fragment of Tp that includes V quantifiers o

Array property

> a-formula of form o B
Yi. F[i] = GJ[i] ,

where | is a list of variables.

e index guard F[i]:

iguard — iguard A iguard | iguard V iguard | atom
atom — var = var | evar # var |var # evar | T
var — evar | uvar

where uvar is any universally quantified index variable,
and evar is any constant or unquantified variable.

e value constraint G[i]: a universally quantified index can occur in a
value constraint G[i] only in a read a[i], where a is an array term.
The read cannot be nested; for example, a[b[i]] is not allowed.

Array property Fragment: Boolean combinations of quantifier-free
Ta-formulae and array properties
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 261 / 376

Example: Array Property Fragment &

Is this formula in the array property fragment?
F : Vi i # alk] — a[i] = a[k]

The antecedent is not a legal index guard since a[k] is not a variable
(neither a uvar nor an evar); however, by simple manipulation

F' o v =alkl] AVi.i # v — a[i] = a[K]

Here, i # v is a legal index guard, and a[i] = alk] is a legal value
constraint. F and F’ are equisatisfiable.

This trick works for every term that does not contain a uvar.
However, no manipulation works for:

G : Vi i# ali] — a[i] = alk] .

Thus, G is not in the array property fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 262 / 376

Example: Array Property Fragment (cont) £

Is this formula in the array property fragment?
F' 2 Vij.i # j— ali] # alj]

No, the term uvar # uvar is not allowed in the index guard. There is no
workaround.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 263 / 376

Array property fragment and extensionality g

Remark: Array property fragment allows expressing equality between
arrays (extensionality): two arrays are equal precisely when their
corresponding elements are equal.

For given formula
F: - ---ANa=hbA--

with array terms a and b, rewrite F as
F'o oo ANV T = ali] = b[li]) A--- .

F and F’ are equisatisfiable.
F’ is in array property fragment of Th.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 264 / 376

Decision Procedure for Array Property Fragment g

Basic Idea: Similar to quantifier elimination.
Replace universal quantification
Vi.Fli]

by finite conjunction
Flti] A ... A Flta].

We call t,..., t, the index terms and they depend on the formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 265 / 376

Example g

Consider 2"
F: a(i<xv) =aAali] # v,
which expands to

F' o V. ali avj] = alj] A ali] # v .

Intuitively, only the index i is important:

F" . /\ a(i < v)[j] = alj] | A ali] # v,
Je{it
or simply
a(i av)[i] = ali] A a[i] # v .
Simplifying,
v =a[i] Aali] # v,
it is clear that this formula, and thus F, is Ta-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 266 / 376

Decision Procedure for Array Property Fragment g
Given array property formula F, decide its Ta-satisfiability by the following 5t
steps:

Step 1

Put F in NNF, but do not rewrite inside a quantifier.

Step 2
Apply the following rule exhaustively to remove writes:

Fla(i @ v)]

Fld1ANd[il=vAN.j#i—a)] =4a])
After an application of the rule, the resulting formula contains at least one
fewer write terms than the given formula.

for fresh @ (write)

Step 3
Apply the following rule exhaustively to remove existential quantification:
F[3i. G[]]

for fresh j (exists)

FIGL]]
Existential quantification can arise during Step 1 if the given formula has a
negated array property.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 267 / 376

Steps 4-6 accomplish the reduction of universal quantification to finite
conjunction.

Main idea: select a set of symbolic index terms on which to instantiate all
universal quantifiers. The set is sufficient for correctness.

Step 4
From the output F3 of Step 3, construct the index set Z:

{A
Z = U{t : -[t] € F3such that t is not a universally quantified variable}
U {t : toccurs as an evar in the parsing of index guards}

This index set is the finite set of indices that need to be examined. It includes

o all terms t that occur in some read a[t] anywhere in F (unless it is a
universally quantified variable)

@ all terms t (constant or unquantified variable) that are compared to a
universally quantified variable in some index guard.

@)\ is a fresh constant that represents all other index positions that are not
explicitly in Z.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 268 / 376

Step 5 (Key step)
Apply the following rule exhaustively to remove universal quantification:

HIVi. Fli] — G[il] (forall)

H| N\ (FI1— G[i)

iezn

where n is the number of quantified variables i.

Step 6
From the output Fs of Step 5, construct

Fo: Fsn N\ X#i.
i€ I\{\}
The new conjuncts assert that the variable X introduced in Step 4 is
indeed unique.

Step 7
Decide the Ta-satisfiability of Fg using the decision procedure for the
quantifier-free fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 269 / 376

Example g

o
Is this T -formula valid? o

F: (Vi.i # k—a[i] = b[i]) AN blk] = v — alk<v) =0b
Check satisfiability of:

~((Vi. i # k = a[i] = b[i]) A b[k] = v — (¥i. alk a v)[i] = b[i]))

Step 1: NNF
Fi: (Vi.i # k — a[i] = b[i]) A blk] = v A (3i. alk < v)[i] # b[i])
Step 2: Remove array writes
Fp : (Vi. i # k — a[i] = b[i]) A blk] = v A (3i. d[i] # bli])
Nalkl = v AP # k— di] = ali])
Step 3: Remove existential quantifier
F3 : (Vi.i # k — a[i] = bli]) A blk] = v A d'[j] # b[j]
NaTkl = v AT # k= dli] = a[i])

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 270 / 376

Example (cont) 2

Step 4: Compute index set Z = {\, k,j}
Step 5+6: Replace universal quantifier:

Fe : (A # k — a[\] = b[)\])
A (k # k — alk] = b[k])
NG £ K= alj] = b))
A blk] = v A d'[j] # b[j] A d[k] = v
A\ # k= 3N\ = a[)])
A (k # k — d[k] = a[k])
NG # k=[] = alj])
AXNEKAN#]

Case distinction on j = k proves unsatisfiability of Fg.
Therefore F is valid

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 271 / 376

The importance of A &

Is this formula satisfiable?
F : (Vi # j— a[i] = bli]) A (Vi.i # k — a[i] # b|i])
The algorithm produces:
Fo : A # j — a[A\] = b[}]

N #J = alj] = bl
N k # j — alk] = b[K]
A X # k — a[\] # b[A]
Nj# k— alj] # blj]
N k # k — a[k] # b[k]
ANXFEJAXNZk

The first, fourth and last line give a contradiction!

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 272 / 376

The importance of A (cont)

Without A we had the formula:

Fo :Jj # j— alj] = blj]
Ak # j— alk] = b[K]
NJj # k—alj] # blj]
Ak # k — alk] # bK]

which simplifies to:

J # k — alk] = blk] A alj] # blj].

This formula is satisfiable!

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020

273 / 376

Correctness of Decision Procedure g

Consider a X p-formula F from the array property fragment of Ta. The
output Fg of Step 6 of the algorithm is Tp-equisatisfiable to F.

This also works when extending the Logic with an arbitrary theory T with
signature X for the elements:

Consider a ¥ p U X-formula F from the array property fragment of To U T.
The output Fg of Step 6 of the algorithm is Ta U T -equisatisfiable to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 274 / 376

Proof of Theorem g

Proof: It is easy to see that steps 1-3 do not change the satisfiability of
formula.

For step 4—6 we need to show:

(1) H[Vi. (F[i] — G[i])] is satisfiable
iff.
(2) H[Nsern(FI] = GI] A Nien\(ap A # i is satisfiable.

If the formula (1) is satisfied some Interpretation, then (2) holds in the
same interpretation.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 275 / 376

Proof of Theorem (cont) -

If the formula (2) holds in some interpretation /, we construct an

interpretation J.
Core idea: Change the array values a[i] at indices i ¢ Z to a[)].

Formally, we define
projy - Dy —» T
where a/[;.Jroj,(v)] =v if3i GII.a/[i] =v
proji(v) = A otherwise

ay[[1l(va; vi) = ail-[11(va, cu[proji(vi)])
ay[x] = «y[x] for all other symbols

J interprets the symbols occuring in formula (2) in the same way as /.
Therefore, (2) holds in J.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 276 / 376

Proof of Theorem (cont) g

Consider an J-variant J' = J < {i ~ v}. To prove (1), we show

J' = F[i] — Flproji(v)] — G[proj;(V)] — GJi]

The second implication F[proji(V)] — G[proji(v)] holds,
because proj;(v) € Z" and (2) holds for /, J and J'.

The third implication G[projz(i)] — G[i] holds because G contains
variables i only in array reads a[i]. By definition of J:

aylalil] = ailalprojz(v)]] = axlalprojz(v)]l.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 277 / 376

Proof of Theorem (cont) -

Consider an J-variant J' = J < {i ~ v}. To prove (1), we show

J' = F[i] — Flproj;(v)] — G[proji(v)] = G]i]

The first implication F[i] — F[proji(i)] can be shown for each literal in F.
e Literals not containing i are not changed by projection.
e i1 = ip — proji(v1) = proji(v2), because vi = ay[i1] and
OéJ/[ig] = .
ot=1i—t=proj(v) (and t € I):
If v = Oé_//[i] = Oé_//[t], then
ayproji(v)] = ailproji(v)] = v = aylt].
ot #i—tF# proj(v) (and t € TI):
If ayt] = ay[proj(v)] then proji(v) # X (because (2) holds).
By definition of proji: ay[i] = v = «a;[proji(v)] = auy(t)
Since F is in NNF, the implication can be lifted to the whole formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 278 / 376

Theory of Integer-Indexed Arrays T7 g

< enables reasoning about subarrays and properties such as subarray is
sorted or partitioned.

signature of T/%: Z% =YAU2Xy

axioms of T/%: both axioms of Tp and Ty

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 279 / 376

Array Property Fragment of T7 8

Array property: ¥4-formula of the form
Vi. F[i] = G[i],
where i is a list of integer variables.

@ F[i] index guard:

iguard — iguard A iguard | iguard V iguard | atom
atom — expr < expr | expr = expr
expr — uvar | pexpr
pexpr — pexpr’
pexpr’ — Z | Z - evar | pexpr’ + pexpr’

where uvar is any universally quantified integer variable,
and evar is any existentially quantified or free integer variable.

e GJi] value constraint:
Any occurrence of a quantified index variable i must be as a read into
an array, a[i], for array term a. Array reads may not be nested; e.g.,
a[b[f]] is not allowed.

Array property fragment of T2 consists of formulae that are Boolean

combinations of quantifier-free Z%-formulae and array properties.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 280 / 376

Application: array property fragments &

o Array equality a = bin Ta:
Vi. ali] = bi]
o Bounded array equality beq(a, b, ¢, u) in TZ:
Vi.t < i < u— ali] = bl[i]

Universal properties F[x] in Ta:
Vi. Fla[i]]
Bounded universal properties F[x] in TZ:

Vi.l < i < u— Flai]]

Bounded and unbounded sorted arrays sorted(a, ¢,u) in T2 U Ty:
Vij. b < i <j<u—ali] < alj

e Partitioned arrays partitioned(a, /1, u1, {2, u2) in T/% U Tz:

Vij, 1 < i< <l <j < uw—ali] < alj

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 281 / 376

The Decision Procedure (Step 1-2) 2

52

=]y
The idea again is to reduce universal quantification to finite conjunction.
Given F from the array property fragment of TZ, decide its

T/%—satisfia bility as follows:

EIBU

Step 1
Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:

Fla(i < e)] T
FldTAa[]=en (V.] #i— a]j] = a[]) for fresh (write)

To meet the syntactic requirements on an index guard, rewrite the third
conjunct as

Viij<i—1Vvi4+1<j—a]]=24]].

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 282 / 376

The Decision Procedure (Step 3-4) 2

Step 3
Apply the following rule exhaustively to remove existential quantification:
F[3i. G[]]

W for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula has a
negated array property.

Step 4
From the output of Step 3, F3, construct the index set Z:

7 _ {t : -[t] € F3 such that t is not a universally quantified variable}
U {t : toccurs as a pexpr in the parsing of index guards}

If Z = (), then let Z = {0}. The index set contains all relevant symbolic
indices that occur in F3.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 283 / 376

The Decision Procedure (Step 5-6) 2

Step 5
Apply the following rule exhaustively to remove universal quantification:

H[Vi. Fli] — G[i]]

H| N\ (FI1— G[il)

iezn

(forall)

n is the size of the block of universal quantifiers over i.

Step 6
Fs is quantifier-free in the combination theory Ta U Tz. Decide the
(Ta U Ty)-satisfiability of the resulting formula.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 284 / 376

Example g
5
Z%—formula:
£ (Vi.l < i < u—a[i] = b[i])
ANV <P <u+41—alu+1ablu+ 1))]i] = bli])

In NNF, we have

(\7 b[i])

F - , + 1 A a(u + 1< blu+ 1])[i] # bli])

14
A (3.
Step 2 produces
(Vi. ¢ < i < u— a[i] = bli])
AN@Ei b <i<u+1Ad[i]# bl

A du+ 1] = blu + 1]
ANV.j<u+1-1Vu+14+1<j—al]=24])

Fg:

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 285 / 376

Step 3 removes the existential quantifier by introducing a fresh constant k:

(Vi. £ < i < u— a[i] = bl[i])

AN < k <u+1Ad[k] # bK]

A du+ 1] = blu + 1]
ANY.j<u+1-1Vu+1+1<j—al] =2

F:

Simplifying,

(Vi ¢ < i < u—a[i] = b[i])

AN < k <u+1A3d[k] # blk]

A du+ 1] = blu + 1]
ANV.j<uvVu+2<j—aj]=2]])

The index set is

Z=Aku+1} U {{,u,u+ 2},

which includes the read terms k and v + 1 and the terms ¢, u, and u + 2

that occur as pexprs in the index guards.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020

286 / 376

Step 5 rewrites universal quantification to finite conjunction over this set:

./\(€§i§ u — ali] = bli])

I/§€I§k§u+1/\a’[k]7§b[k]

A du+ 1] = blu + 1]

ANNANGSuve+2<)—alj]=a)
JjeT

F5Z

Expanding the conjunctions according to the index set Z and simplifying
according to trivially true or false antecedents (e.g., { < u+1 < u
simplifies to L, while v < vV u + 2 < u simplifies to T) produces:

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 287 / 376

(¢ < k < u— alk] = blk]) (1
AN < u—all] = bll] A a[u] = b[u]) (2
AN< k<u+1 (3
g Nk # blK] (4
5 Ad[u+1] = blu+1] (
ANk <uVu+2<k—alkl =da[k]) (
ANl <uvu+2</{t—all] =2

(

A alu] = a'fu] A alu + 2] = d'[u + 2]

~— N N N S N N

5
6
7
8

(Ta U Tz)-unsatisfiability of this quantifier-free (XA U X7z)-formula can be
decided using the techniques of Combination of Theories.
Informally, £ < k < u + 1 (3)
o If k € [¢,u] then a[k] = b[k] (1). Since k < u then a[k] = &'[K]
(6), contradicting a'[k] # b[k] (4).
o if k = u+ 1, d[k] # blk] = blu + 1] = &'[u + 1] = d'[Kk] by (4)
and (5), a contradiction.

Hence, F is TAZ—unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 288 / 376

Correctness of Decision Procedure g

Consider a Z% U X -formula F from the array property fragment of
Tf U T. The output Fs of Step 5 of the algorithm is
T/% U T-equisatisfiable to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 289 / 376

Proof of Theorem g

Proof: The proof proceeds using the same strategy as for Ta.

It is easy to see that steps 1-3 do not change the satisfiability of formula.
For step 4-5 we need to show:

(1) H|Vi. (F[i] — G[i])] is satisfiable
iff.
(2) H[N;ezn(FIi] = G[i])] is satisfiable.

= Obviously formula (1) implies formula (2).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 290 / 376

Proof of Theorem (cont) -

If the formula (2) holds in some interpretation | = (D;, «y), we construct
an interpretation J = (Dj, ay) with D, := D; and

projy - Dy = T
where either o [proji(v)] < v and maximal,
i.e., ay[t'] < ay[proji(v)] for all ' € T with oy[t'] < v
or v < aq[proji(v)] and minimal,
i.e., ajfproji(v)] < aq[t’] forall t’ € T
ay[[(va, vi) = eul-[11(va; cuslproji(vi)])
ay[x] = «y[x] for every other symbol

J interprets the symbols occuring in formula (2) in the same way as /.
Therefore, (2) holds in J.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 291 / 376

Proof of Theorem (cont) g

Consider an J-variant J' = J < {i + v}. To prove (1), we show
J' = F[i] — Flproj;(V)] — G[proji(V)] — G]i]

The first implication J' = F[i] — F[proj;(V)] can be shown for each
literal separately.

@ expr; < expry. see exercise.

@ expr; = expry: follows from first case since it is equivalent to
expr1 < expra N\ expro < expry .
Again the implication lifts to F because it is in NNF.

The second and third implication hold for the same reason as in Tx.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2019/2020 292 / 376

	Theory of Arrays
	Array Property Fragment
	Theory of Integer-Indexed Arrays

