
Prof. Dr. Andreas Podelski
Dominik Klumpp

Hand in until December 11th, 2019
15:59 via the post boxes

Discussion: December 16th, 2019

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 8

Exercise 1: Coffee Machine and Transition System 8 Points
The goal of this task is to provide some intuition on when the system described by a program

graph satisfies given properties, by looking at the transition system.

The following program graph describes a simple coffee machine:

off brewing

heating

coffee = 0 ∧ power = 0

true : turn on

coffee = 4 : heat

coffee = 0 : restart

coffee = 0 : turn off

coffee < 4 : brew

coffee > 0 : drink

The effect of the operations is given by:

Effect(turn on, η) = η[power := 1]

Effect(turn off , η) = η[power := 0]

Effect(brew , η) = η[coffee := coffee + 1]

Effect(drink , η) = η[coffee := coffee − 1]

Effect(restart , η) = η

Effect(heat , η) = η

(a) Give the program from which the above program graph is derived. Use the Guarded
Command Language (GCL) for the program. Mark the lines of the program that
correspond to the locations off, brewing, and heating.

(b) Draw the (reachable part of the) transition system corresponding to the program
graph. Choose 5 transitions of the transition system, and justify their existence
using the respective SOS-rule.

Use the SOS-rules to argue why the following transitions are not part of the tran-
sition system:

〈off, {coffee 7→ 0, power 7→ 0}〉 heat−−→ 〈heating, {coffee 7→ 0, power 7→ 0}〉

〈brewing, {coffee 7→ 4, power 7→ 1}〉 brew−−→ 〈brewing, {coffee 7→ 5, power 7→ 1}〉

1

(c) Use the transition system to check which of the following properties are true for
every execution of the coffee machine.

(i) If the machine is turned off (power = 0), it contains no coffee (coffee = 0).

(ii) If there are two cups of coffee (coffee = 2), there are either three or four cups
of coffee in the next step (coffee = 3, coffee = 4).

(iii) There are always at most four cups of coffee (coffee ≤ 4).

(iv) The coffee machine will be turned off (i.e., in location off) infinitely often.

(v) If there is no coffee (coffee = 0), there will be coffee after at most three steps.

Exercise 2: Arbiter with 3-way Synchronization 7 Points
The goal of this exercise is to gain an understanding how the different parallel composition op-

erators behave.

In the lecture we considered a system for mutual exclusion with an arbiter. The sys-
tem was composed of two transition systems T1 and T2 as well a transition system
Arbiter , and we considered the parallel composition (T1 ‖| T2) ‖Syn Arbiter where Syn =
{enter, release}. In this exercise, we will consider alternative ways to compose these
components.

(a) Draw the parallel composition (T1 ‖Syn T2) ‖Syn Arbiter , where Syn is as above.
How many component systems can synchronize on a single transition (i.e., change
their state together in one step) in this system? Does the system ensure mutual
exclusion?

(b) Draw the parallel composition T1‖|T2‖|Arbiter . How many component systems can
synchronize on a single transition in this system? Does the system ensure mutual
exclusion?

(c) Is the parallel composition T1 ‖ T2 ‖ Arbiter allowed? Why/why not?

Exercise 3: Producer/Consumer 5 Points
The goal of this exercise is to understand how channel systems can be implemented.

On last week’s exercise sheet, we saw that asynchronous channels can be implemented
by a shared variable in a program graph. An alternative way to implement asynchronous
channels is via handshaking (synchronous communication).
Consider as an example the two transition systems below that communicate over a channel
c. They represent a simple producer/consumer system, where one component continu-
ously produces data (here always represented by msg) and the other component consumes
this data and processes it.

2

working

sending

produce c!msg

Producer

waiting

processing

c?msg consume

Consumer

When we use handshaking instead, we need a third component Channel . We replace the
actions c?msg and c!msg by action labels send msg and rcv msg, yielding the transition
systems below:

working

sending

produce send msg

Producer ′

waiting

processing

rcv msg consume

Consumer ′

(a) Draw the transition system for the missing component Channel . Assume that the
channel is reliable, but has a limited capacity of 2 messages. When the channel is
full, all further sent messages are lost.

Specify how the components Producer ′, Consumer ′ and Channel are composed, i.e.
which parallel composition operators must be used.

(b) Now assume the channel c is unreliable: It may lose a message at any time. Further-
more, it still has a limited capacity of 2 messages and will lose all further messages.
Draw the transition system for this variant of the component Channel . Specify how
the components Producer ′, Consumer ′ and Channel are composed.

(c) Above we assumed that a full channel loses all further messages sent by the sender
(here Producer ′). An alternative behaviour is that the sender blocks, and cannot
send the message until there is space in the channel. How do the transition systems
for the two variants of Channel have to change to implement this behaviour instead?

3

