Prof. Dr. Andreas Podelski Hand in until February 5th, 2020
Dominik Klumpp 15:59 via the post boxes
Discussion: February 10th, 2020

UNI

FREIBURG

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 14

Exercise 1: Traffic Light 12 Points
In this exercise, we arrive at the goal towards which we have worked the whole semester: For a
cyber-physical system (given as a transition system) and desired correctness properties, we are
able to determine if the system satisfies these properties.

The following transition system 7" models the behaviour of a traffic light.

(a) Draw an NFA A7 over the alphabet ¥ = 247 with AP = {red, yellow, green} such
that Ap accepts exactly the finite prefixes of Traces(T), i.e., L(Ar) = pref (Traces(T)).

(b) Consider the following safety properties:

(Py) “It is always the case that if the green light is on, then the red light will be off
i the next step.”

(Py) “It is always the case that if the red light is on, then the green light will be off
in the next step.”

Formalize these properties as sets of traces over the set of atomic propositions
AP = {red, yellow, green}, in the style {AgA1As... | Vi...}.

(c) Give automata for the bad prefixes of these properties. Le., draw NFAs Ap such
that Ap accepts exactly the bad prefixes of the property P (for P = P; resp.
P=P).

Draw the automata in symbolic notation, i.e., with propositional formulas as edge

labels.

(d) For each of the two properties P, execute the algorithm below to check whether
the bad prefix automaton Ap is disjoint from the automaton Ar, i.e., whether
L(A7) N L(Ap,) = {}. If they are not disjoint, give a finite prefix that is accepted
by both automata.

Algorithm: Convert the bad prefix automaton from symbolic notation to standard
notation, i.e., such that each edge is labeled with a set of atomic propositions. Then

construct the parallel composition Ap || Ar. As before, the edge labels are used for
synchronization (handshaking). The only difference is that in this case, the edge
labels are letters in ¥ = 247,

The states of the resulting system are pairs (q;, g2) where ¢; is a state of Ap and ¢y
is a state of Ap. If there exists a reachable state (g1, ¢2) such that both ¢; and ¢,
are accepting states, then the automata are not disjoint and 7" violates the property
P. If no such state exists, then 7" satisfies the property P.

Exercise 2: Regular Expressions 3 Points 4+ 1 Bonus Points
Let AP = {a,b,c} be a set of atomic propositions. We now consider regular expressions
(for sets of finite words) over the alphabet ¥ = 247, Answer the questions below.

Reminder: Remember that () denotes the empty set of atomic propositions (a letter of
the alphabet X), while ¢ is a regular expression denoting the empty set of finite words (a
set of words over the alphabet ¥2).

(a) The regular expression () + {b} + {a, b, c} denotes a set of finite words. How many
finite words are in this set? What is the length of each of these finite words?

(b) As described in the lecture, we can use a propositional formula ® to abbreviate the
regular expression (A;+As+. ..+ A,), where {Ay, As, ..., A} ={AC AP | A E ®}.

For each of the regular expressions below, list all finite words in the denoted set.

(i) (aAN=b)+(aNc) (ii) (aA=b)V (aAc) (iii) false . (—a)

(¢) We introduced the regular expression ¢, which denotes the empty set of finite words.
If we allow propositional formulas in regular expressions (as above), do we really
need the symbol ¢? Why / why not?

Similarly, do we need the symbol +7 Why / why not?

Exercise 3*: Properties given by a Transition System 4 Bonus Points
We have learned to distinguish safety and liveness properties. It was discussed in the
lecture that the set Traces(T) of a transition system 7T is itself a property.

(a) For an arbitrary transition system 7, is the property Traces(T) always a liveness
property? If so, argue why this is the case. If not, give a counterexample.

(b) For an arbitrary transition system 7', is the property Traces(T) always a safety
property? If so, argue why this is the case. If not, give a counterexample.

Hint: Consider for instance the program x:=nondet(); while (x > 0){ x——; }
and the set of atomic propositions AP = {xz < 0}. Here, the procedure nondet ()
nondeterministically chooses and returns an arbitrary integer.

