
Prof. Dr. Andreas Podelski
Dominik Klumpp
Frank Schüssele

Hand in until December 9th, 2020
23:59 via ILIAS

Discussion: December 14th/15th, 2020

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 5

Exercise 1: Mutual Exclusion without Request 6 Points
The goal of this exercise is to help you understand in detail the SOS-rules for parallel composi-

tions.

The transition systems below describe a mutual-exclusion protocol with an arbiter. In
contrast to the system discussed in the lecture, we omit the request action.

idle

crit

enter exit

TS 1

unlock

lock

enter exit

Arbiter

idle

crit

enter exit

TS 2

(a) Draw the transition system for the pure interleaving TS 1 ‖|TS 2. There must be no
synchronization between the two transition systems.

For every transition in the interleaving, justify why it must exist using one of the
two SOS-rules for pure interleaving.

Example: The interleaving must contain the transition 〈idle, idle〉 enter−−−→ 〈crit, idle〉
due to the SOS-rule

idle
enter−−−→1 crit

〈idle, idle〉 enter−−−→ 〈crit, idle〉

where →1 is the transition relation for TS 1. This is an instance of the first of the
two SOS-rules,

s1
α−→1 s

′
1

〈s1, s2〉
α−→ 〈s′1, s2〉

where we set s1 = idle, α = enter, s′1 = crit and s2 = idle.

(b) Draw the transition system for the parallel composition (TS 1 ‖| TS 2) ‖ Arbiter
of the transition system from (a) with the arbiter. The transition systems must
synchronize (“handshake”) on the actions {enter, exit}.
For every transition in the composition, justify why it must exist using one of the
three SOS-rules for the synchronization operator.

1



Exercise 2: Parallelism - Interleaving 6 Points
The goal of this exercise is to construct the interleaving of two program graphs and the corre-

sponding transition system.

Consider the following parallel system consisting of two processes. The programs for each
process are given in a low-level programming language.

Algorithm 1:

r1 := x+ 1;
x := r1;

Algorithm 2:

r2 := 3 ∗ x;
x := r2;

(a) Draw the program graphs P1 and P2 for each process.

(b) Draw the interleaving of the program graphs P1 ‖| P2.

(c) Draw the reachable part of the transition system TP1‖|P2 . We assume that the initial
value of x is 1 and the initial values of r1 and r2 are both 0. Use it to determine
which values can finally be stored in x.

It is not strictly needed for solving the exercise above, but, for those who are interested
in the motivation for the two exercises:
The above program can be seen as a model for an assembler program, namely the assem-
bler program to which the program you have seen in the lecture (two processes consisting
of the single statements x := x+ 1 and x := 3 ∗ x) is compiled.
This serves to explain that one cannot assume that an update statement in a high-level
language is an atomic action.
In the exercise we just used a simplified version of the assembler code by merging the
first two statements of the processes to reduce the size of the program graph.

Algorithm 1:

LOAD x;
ADDI 1;
STORE x;

Algorithm 2:

LOAD x;
MULTI 3;
STORE x;

Semantics of the assembler commands:

� LOAD i : Load the content of address i of the memory into an accumulator register
ACC.

� ADDI i : Adds i to the content of register ACC and stores the result in ACC.

� MULTI i : Multiplies the content of register ACC with i and stores the result in
ACC.

� STORE i : Store the content of register ACC at memory address i.

Note: A variable is here represented by a memory address which is a typical abstraction.

2


