

Prof. Dr. Andreas Podelski Dominik Klumpp Frank Schüssele

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 9

Exercise 1: Linear-Time Properties I

7.5 Points

The goal of this exercise is to construct transition systems for given properties. Assume $AP = \{a, b\}$. For each of the properties P_i , complete the following tasks:

- (a) Formalize P_i as a set of traces using set comprehension. For example: "always a" can be formalized as $\{A_0A_1A_2\cdots | \forall i. a \in A_i\}$.
- (b) If possible, draw a transition system (with at least 2 traces) that satisfies P_i .
- (c) If possible, draw a transition system (with at least 2 traces) that does not satisfy P_i .
- (P_1) True
- (P_2) False
- (P_3) There are at most 2 points of time, where a holds.
- (P_4) There are infinitely many points of time, where b holds.
- (P_5) Whenever *a* holds, *b* holds in the next step.

Exercise 2: Linear-Time Properties II

5 Points

The goal of this exercise is to find properties for given transition systems. Assume $AP = \{a, b\}$. For each of the transition system T_i , complete the following tasks:

- (a) Give a property (different from "True") using set comprehension that is satisfied by T_i . Do not use any property more than once.
- (b) Give a property (different from "False") using set comprehension that is not satisfied by T_i . Do not use any property more than once.

 (T_1)

 (T_2) (S_1) (S_2) $\{a\}$ $\{b\}$

 (T_3)

 (T_4)

 (T_5)

