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Exercise 1?: Evaluation 1 Bonus Point
Complete the lecture evaluation

Exercise 2: Invariant checking I 4 Points
In the lecture, you have seen an algorithm for invariant checking by forward depth-first
search. This algorithm is displayed in algorithm 1.
Apply this algorithm to the following transition system whose set of atomic propositions
is AP = {a, b}. The invariant Φ to be checked is the propositional logical formula a.

s0 {a} s1 {a}

s2

{a, b}

s3

{a}

s4

{b}

Whenever you iterate over a set of states, always take state si before state sj if i is smaller
than j.
Present the execution of the algorithm by writing down the contents of the set U and the
stack π directly before every call to the function DFS.

Exercise 3?: Invariant checking II 2 Bonus Points
The “DFS-based invariant checking” algorithm presented in algorithm 1 (and in the lec-
ture) always computes a minimal counterexample (minimal in the sense that you cannot
remove the last state). However, the algorithm does not necessarily compute a coun-
terexample of minimal length (there might be two minimal counterexamples of different
lengths). What is an example that shows that the counterexample that is returned does
not always have minimal length? For this purpose, provide the following:

� A transition system that has three states s0, s1, s2.

� An invariant.

� The counterexample with non-minimal length that is computed by the algorithm
that uses the following strategy for iterating over a set of states: always take state
si before state sj if i is smaller than j.

� A counterexample of minimal length.

1



Algorithm 1: DFS-based invariant checking

input : a finite transition system T and a propositional formula Φ
output: “yes” if T |= “always Φ”, otherwise “no” and a counterexample
U := ∅; // set of states

π := ε; // stack of states

forall s ∈ I do
if DFS(s,Φ) then

return(“no”, reverse(π)); // path from s to error state

end

end
return(“yes”); // T |= ‘‘always Φ’’

function DFS(s,Φ)
push(s, π);
if s /∈ U then

U := U ∪ {s}; // mark s as reachable

if s 6|= Φ then
return(“true”); // s is an error state

else
forall s′ ∈ Post(s) do

if DFS(s′,Φ) then
return(“true”); // s′ lies on a path to an error state

end

end

end

end
pop(π);
return(“false”);

end
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Exercise 4: Paths and Traces 6 Points
The following exercise should help you to understand the differences between paths and traces

and the corresponding fragments.

Consider the following transition system with the set of atomic propositions AP = {a, b}.

s1

{a}

s2{} s3 {a}

s4

{a, b}

Solve the following tasks.

(a) Give examples that illustrate the difference between the different notions of paths
and path fragments. Therefore give the following path fragments of the given
transition system:

� A path fragment that is neither initial nor maximal

� An initial path fragment that is not maximal

� A maximal path fragment that is not initial

� An initial and maximal path fragment (i.e. a path)

(b) Reformulate task (a), but now for traces instead of paths and then solve the task.

(c) Give an example of a non-maximal path fragment that is not a path fragment of
the transition system.

(d) Give an example of a non-maximal trace fragment that is not a trace fragment of
the transition system.

(e) Give an example of a path that is not a path of the transition system.

(f) Give an example of a trace that is not a trace of the transition system.

Exercise 5: Complement of LT-Properties 4 Points
This exercise is supposed to reveal some interesting (and possibly counter-intuitive) facts about

LT properties and their complement.

Determine if the following statements hold for every trace τ ∈ (2AP)ω, transition system
T over AP and property E ⊆ (2AP)ω.
If a statement holds, give a proof. Otherwise give a counterexample.

(a) If τ |= ¬E holds, does it follow that τ 6|= E holds?

(b) If τ 6|= E holds, does it follow that τ |= ¬E holds?

(c) If T |= ¬E holds, does it follow that T 6|= E holds?
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(d) If T 6|= E holds, does it follow that T |= ¬E holds?

Notes:

� The negation of a property E is defined as ¬E := (2AP )ω \ E

� A trace τ satisfies a property E, τ |= E if and only if τ ∈ E
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