

Prof. Dr. Andreas Podelski Dominik Klumpp Frank Schüssele

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 6

Exercise 1: Executions, Paths and Traces 5+2 Points Consider the following transition system with the set of atomic propositions $AP = \{a, b\}$.

Solve the following tasks.

- (a) Give examples that illustrate the difference between the different notions of executions and execution fragments. Therefore give the following execution fragments of the given transition system:
 - An execution fragment that is neither initial nor maximal
 - An initial execution fragment that is not maximal
 - A maximal execution fragment that is not initial
 - An initial and maximal execution fragment (i.e. an execution)
- (b) How many executions does the transition system have? Explain your answer.
- (c) Provide a path of the transition system. How many are there in total?
- (d) How many traces does the transition system have? Provide all of them.
- (e) **Bonus:** Is it possible to have a transition system with infinitely many executions and only finitely many paths? If yes, provide such a transition system, otherwise explain why this is not possible.

Exercise 2: Starvation Freedom

In the lecture we discussed two different definitions of the starvation freedom property for the mutual exclusion problem. We consider the set of atomic propositions $AP = \{wait_1, wait_2, crit_1, crit_2\}$. The properties are defined as

$$LIVE := \begin{cases} \text{set of all infinite traces } A_0A_1A_2\dots \text{ s.t.} \\ (\exists i \in \mathbb{N} . \mathsf{wait}_1 \in A_i) \to \exists i \in \mathbb{N} . \mathsf{crit}_1 \in A_i \\ (\exists i \in \mathbb{N} . \mathsf{wait}_2 \in A_i) \to \exists i \in \mathbb{N} . \mathsf{crit}_2 \in A_i \\ \end{cases}$$
$$LIVE' := \begin{cases} \text{set of all infinite traces } A_0A_1A_2\dots \text{ s.t.} \\ \forall i \in \mathbb{N} . (\mathsf{wait}_1 \in A_i \to \exists j \in \mathbb{N} . j \ge i \land \mathsf{crit}_1 \in A_j) \\ \forall i \in \mathbb{N} . (\mathsf{wait}_2 \in A_i \to \exists j \in \mathbb{N} . j \ge i \land \mathsf{crit}_2 \in A_j) \end{cases}$$

- (a) Show that the property LIVE' is at least as strong as the property LIVE, i.e., prove that $LIVE' \subseteq LIVE$.
- (b) Show that LIVE' is a strictly stronger property than LIVE: Give an infinite trace $\pi = A_0A_1A_2...$, and prove that $\pi \in LIVE$ but $\pi \notin LIVE'$.
- (c) Does such a trace π with $\pi \in LIVE$ but $\pi \notin LIVE'$ exist in the transition systems for mutual exclusion discussed in the lecture (with semaphore resp. with Peterson algorithm)? Why/why not?
- (d) Does there exist a trace π with $\pi \in LIVE'$ but $\pi \notin LIVE$ in the transition systems for mutual exclusion discussed in the lecture (with semaphore resp. with Peterson algorithm)? Why/why not?

Exercise 3: Trace Inclusion

Consider the program graphs \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_{3a} , and \mathcal{P}_{3b} as well as the transition system \mathcal{T}_4 .

The domain of the variable x in all 3 program graphs is the set of integers \mathbb{Z} . The effect of the assignment action is as expected, and $Effect(nop, \eta) = \eta$.

4 Points

9 Points

- (a) Draw the (reachable part of the) transition systems $\mathcal{T}_{\mathcal{P}_1}$, $\mathcal{T}_{\mathcal{P}_2}$ and $\mathcal{T}_{\mathcal{P}_{3a} \parallel \mid \mathcal{P}_{3b}}$. As atomic propositions of the transition system, use the guards of the actions in the program graph, i.e. $AP = \{x > 0, x = 0\}$.
- (b) For each pair $\mathcal{T}, \mathcal{T}' \in \{\mathcal{T}_{\mathcal{P}_1}, \mathcal{T}_{\mathcal{P}_2}\mathcal{T}_{\mathcal{P}_{3a}|||\mathcal{P}_{3b}}, \mathcal{T}_4\}$, consider the trace inclusion $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$. If it holds, argue why this is the case. If it does not hold, give a trace $\pi = A_0 A_1 A_2 \ldots$ such that $\pi \in Traces(\mathcal{T})$ but $\pi \notin Traces(\mathcal{T}')$.
- (c) Give a property E (i.e., a set of traces) such that $\mathcal{T}_{\mathcal{P}_1} \models E$ and $\mathcal{T}_{\mathcal{P}_2} \models E$ but $\mathcal{T}_{\mathcal{P}_{3a} \parallel \mathcal{P}_{3b}} \not\models E$ and $\mathcal{T}_4 \not\models E$. Give traces of $\mathcal{T}_{\mathcal{P}_{3a} \parallel \mathcal{P}_{3b}}$ and \mathcal{T}_4 that violate the property, and argue why $\mathcal{T}_{\mathcal{P}_1}$ and $\mathcal{T}_{\mathcal{P}_2}$ satisfy the property. **Reminder**: A transition system \mathcal{T} satifies a property E (i.e. $\mathcal{T} \models E$) if and only if $Traces(\mathcal{T}) \subseteq E$.