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Exercise 1: Executions, Paths and Traces 5+2 Points
Consider the following transition system with the set of atomic propositions AP = {a, b}.
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Solve the following tasks.

(a) Give examples that illustrate the difference between the different notions of execu-
tions and execution fragments. Therefore give the following execution fragments of
the given transition system:

� An execution fragment that is neither initial nor maximal

� An initial execution fragment that is not maximal

� A maximal execution fragment that is not initial

� An initial and maximal execution fragment (i.e. an execution)

(b) How many executions does the transition system have? Explain your answer.

(c) Provide a path of the transition system. How many are there in total?

(d) How many traces does the transition system have? Provide all of them.

(e) Bonus: Is it possible to have a transition system with infinitely many executions
and only finitely many paths? If yes, provide such a transition system, otherwise
explain why this is not possible.
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Exercise 2: Starvation Freedom 4 Points
In the lecture we discussed two different definitions of the starvation freedom property
for the mutual exclusion problem. We consider the set of atomic propositions AP =
{wait1,wait2, crit1, crit2}. The properties are defined as

LIVE :=


set of all infinite traces A0A1A2 . . . s.t.

(
∞
∃i ∈ N .wait1 ∈ Ai)→

∞
∃i ∈ N . crit1 ∈ Ai

(
∞
∃i ∈ N .wait2 ∈ Ai)→

∞
∃i ∈ N . crit2 ∈ Ai

LIVE ′ :=


set of all infinite traces A0A1A2 . . . s.t.
∀i ∈ N . (wait1 ∈ Ai → ∃j ∈ N . j ≥ i ∧ crit1 ∈ Aj)
∀i ∈ N . (wait2 ∈ Ai → ∃j ∈ N . j ≥ i ∧ crit2 ∈ Aj)

(a) Show that the property LIVE ′ is at least as strong as the property LIVE , i.e., prove
that LIVE ′ ⊆ LIVE .

(b) Show that LIVE ′ is a strictly stronger property than LIVE : Give an infinite trace
π = A0A1A2 . . ., and prove that π ∈ LIVE but π /∈ LIVE ′.

(c) Does such a trace π with π ∈ LIVE but π /∈ LIVE ′ exist in the transition systems
for mutual exclusion discussed in the lecture (with semaphore resp. with Peterson
algorithm)? Why/why not?

(d) Does there exist a trace π with π ∈ LIVE ′ but π /∈ LIVE in the transition systems
for mutual exclusion discussed in the lecture (with semaphore resp. with Peterson
algorithm)? Why/why not?

Exercise 3: Trace Inclusion 9 Points
Consider the program graphs P1, P2, P3a, and P3b as well as the transition system T4.
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`1

0 <= x <= 5

x>0: x:=x-1
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nop
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q0 q1

{x > 0} {x = 0}

T4

The domain of the variable x in all 3 program graphs is the set of integers Z. The effect
of the assignment action is as expected, and Effect(nop, η) = η.
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(a) Draw the (reachable part of the) transition systems TP1 , TP2 and TP3a‖|P3b
.

As atomic propositions of the transition system, use the guards of the actions in
the program graph, i.e. AP = {x > 0, x = 0}.

(b) For each pair T , T ′ ∈ {TP1 , TP2TP3a‖|P3b
, T4}, consider the trace inclusion Traces(T ) ⊆

Traces(T ′). If it holds, argue why this is the case. If it does not hold, give a trace
π = A0A1A2 . . . such that π ∈ Traces(T ) but π /∈ Traces(T ′).

(c) Give a property E (i.e., a set of traces) such that TP1 |= E and TP2 |= E but
TP3a‖|P3b

6|= E and T4 6|= E. Give traces of TP3a‖|P3b
and T4 that violate the property,

and argue why TP1 and TP2 satisfy the property.
Reminder: A transition system T satifies a property E (i.e. T |= E) if and only
if Traces(T ) ⊆ E.

3


