Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 7

Exercise 1: Linear-Time Properties

7 Points
The goal of this exercise is to help you better understand the representation of properties as sets of traces, as well as the notion of satisfaction by a transition system.
Assume $A P=\{a, b\}$. For each of the properties P_{i}, complete the following tasks:
(a) Formalize P_{i} as a set of traces using set comprehension.

For example: "always a " can be formalized as $\left\{A_{0} A_{1} A_{2} \cdots \mid \forall i . a \in A_{i}\right\}$.
(b) Give an example of a trace that satisfies P_{i}.
(c) Give an example of a trace that does not satisfy P_{i}.
(d) State whether or not the transition system below satisfies P_{i}.

$\left(P_{1}\right)$ Always (at any point of time) a or b holds.
$\left(P_{2}\right)$ Always (at any point of time) a and b holds.
$\left(P_{3}\right) b$ never holds before a holds.
$\left(P_{4}\right)$ Every time a holds there will be eventually a point of time where b holds.
$\left(P_{5}\right)$ At exactly three points of time, a holds.
$\left(P_{6}\right)$ If there are infinitely many points of time where a holds, then there are infinitely many points of time where b holds.
$\left(P_{7}\right)$ There are only finitely many points of time where a holds.

This exercise is supposed to reveal some interesting (and possibly counter-intuitive) facts about LT properties and their complement.
Determine if the following statements hold for every trace $\tau \in\left(2^{A P}\right)^{\omega}$, transition system T over $A P$ and property $E \subseteq\left(2^{A P}\right)^{\omega}$.
If a statement holds, give a proof. Otherwise give a counterexample.
(a) If $\tau \models \neg E$ holds, does it follow that $\tau \not \models E$ holds?
(b) If $\tau \not \models E$ holds, does it follow that $\tau \models \neg E$ holds?
(c) If $T \models \neg E$ holds, does it follow that $T \not \models E$ holds?
(d) If $T \not \vDash E$ holds, does it follow that $T \models \neg E$ holds?

Notes:

- The negation of a property E is defined as $\neg E:=\left(2^{A P}\right)^{\omega} \backslash E$
- A trace τ satisfies a property $E, \tau \models E$ if and only if $\tau \in E$

Exercise 3: Invariant checking I

4 Points
In the lecture, you have seen an algorithm for invariant checking by forward depth-first search. This algorithm is displayed in algorithm 1 .
Apply this algorithm to the following transition system whose set of atomic propositions is $A P=\{a, b\}$. The invariant Φ to be checked is the propositional logical formula a.

Whenever you iterate over a set of states, always take state s_{i} before state s_{j} if i is smaller than j.
Present the execution of the algorithm by writing down the contents of the set U and the stack π directly before every call to the function DFS.

```
Algorithm 1: DFS-based invariant checking
input : a finite transition system \(\mathcal{T}\) and a propositional formula \(\Phi\)
output: "yes" if \(\mathcal{T} \models\) "always \(\Phi\) ", otherwise "no" and a counterexample
\(U:=\emptyset\);
                                    // set of states
\(\pi:=\varepsilon\)
// stack of states
forall \(s \in I\) do
    if \(\operatorname{DFS}(s, \Phi)\) then
    return("no", reverse \((\pi)\) ); // path from \(s\) to error state
    end
end
return("yes"); \(/ / \mathcal{T} \models\) ''always \(\Phi\) '"
function \(\operatorname{DFS}(s, \Phi)\)
    push ( \(s, \pi\) );
    if \(s \notin U\) then
        \(U:=U \cup\{s\} ; \quad\) // mark \(s\) as reachable
        if \(s \not \vDash \Phi\) then
            return("true"); // \(s\) is an error state
        else
            forall \(s^{\prime} \in \operatorname{Post}(s)\) do
                if \(\operatorname{DFS}\left(s^{\prime}, \Phi\right)\) then
                    return("true"); // \(s^{\prime}\) lies on a path to an error state
                    end
            end
    end
    end
    pop ( \(\pi\) );
    return("false");
end
```

Exercise 4^{\star} : Invariant checking II
2 Bonus Points
The "DFS-based invariant checking" algorithm presented in algorithm 1 (and in the lecture) always computes a minimal counterexample (minimal in the sense that you cannot remove the last state). However, the algorithm does not necessarily compute a counterexample of minimal length (there might be two minimal counterexamples of different lengths). What is an example that shows that the counterexample that is returned does not always have minimal length? For this purpose, provide the following:

- A transition system that has three states s_{0}, s_{1}, s_{2}.
- An invariant.
- The counterexample with non-minimal length that is computed by the algorithm that uses the following strategy for iterating over a set of states: always take state s_{i} before state s_{j} if i is smaller than j.
- A counterexample of minimal length.

