
Prof. Dr. Andreas Podelski
Dominik Klumpp
Frank Schüssele

Hand in until December 8th, 2021
23:59 via ILIAS

Discussion: December 13th/14th, 2021

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 7

Exercise 1: Linear-Time Properties 7 Points
The goal of this exercise is to help you better understand the representation of properties as sets

of traces, as well as the notion of satisfaction by a transition system.

Assume AP = {a, b}. For each of the properties Pi, complete the following tasks:

(a) Formalize Pi as a set of traces using set comprehension.
For example: “always a” can be formalized as {A0A1A2 · · · | ∀i. a ∈ Ai}.

(b) Give an example of a trace that satisfies Pi.

(c) Give an example of a trace that does not satisfy Pi.

(d) State whether or not the transition system below satisfies Pi.

s1

{a}

s2{} s3 {a}

s4

{a, b}

(P1) Always (at any point of time) a or b holds.

(P2) Always (at any point of time) a and b holds.

(P3) b never holds before a holds.

(P4) Every time a holds there will be eventually a point of time where b holds.

(P5) At exactly three points of time, a holds.

(P6) If there are infinitely many points of time where a holds, then there are infinitely
many points of time where b holds.

(P7) There are only finitely many points of time where a holds.

1

Exercise 2: Complement of LT-Properties 4 Points
This exercise is supposed to reveal some interesting (and possibly counter-intuitive) facts about

LT properties and their complement.

Determine if the following statements hold for every trace τ ∈ (2AP)ω, transition system
T over AP and property E ⊆ (2AP)ω.
If a statement holds, give a proof. Otherwise give a counterexample.

(a) If τ |= ¬E holds, does it follow that τ 6|= E holds?

(b) If τ 6|= E holds, does it follow that τ |= ¬E holds?

(c) If T |= ¬E holds, does it follow that T 6|= E holds?

(d) If T 6|= E holds, does it follow that T |= ¬E holds?

Notes:

� The negation of a property E is defined as ¬E := (2AP)ω \ E

� A trace τ satisfies a property E, τ |= E if and only if τ ∈ E

Exercise 3: Invariant checking I 4 Points
In the lecture, you have seen an algorithm for invariant checking by forward depth-first
search. This algorithm is displayed in algorithm 1.
Apply this algorithm to the following transition system whose set of atomic propositions
is AP = {a, b}. The invariant Φ to be checked is the propositional logical formula a.

s0 {a} s1 {a}

s2

{a, b}

s3

{a}

s4

{b}

Whenever you iterate over a set of states, always take state si before state sj if i is smaller
than j.
Present the execution of the algorithm by writing down the contents of the set U and the
stack π directly before every call to the function DFS.

2

Algorithm 1: DFS-based invariant checking

input : a finite transition system T and a propositional formula Φ
output: “yes” if T |= “always Φ”, otherwise “no” and a counterexample
U := ∅; // set of states

π := ε; // stack of states

forall s ∈ I do
if DFS(s,Φ) then

return(“no”, reverse(π)); // path from s to error state

end

end
return(“yes”); // T |= ‘‘always Φ’’

function DFS(s,Φ)
push(s, π);
if s /∈ U then

U := U ∪ {s}; // mark s as reachable

if s 6|= Φ then
return(“true”); // s is an error state

else
forall s′ ∈ Post(s) do

if DFS(s′,Φ) then
return(“true”); // s′ lies on a path to an error state

end

end

end

end
pop(π);
return(“false”);

end

3

Exercise 4?: Invariant checking II 2 Bonus Points
The “DFS-based invariant checking” algorithm presented in algorithm 1 (and in the lec-
ture) always computes a minimal counterexample (minimal in the sense that you cannot
remove the last state). However, the algorithm does not necessarily compute a coun-
terexample of minimal length (there might be two minimal counterexamples of different
lengths). What is an example that shows that the counterexample that is returned does
not always have minimal length? For this purpose, provide the following:

� A transition system that has three states s0, s1, s2.

� An invariant.

� The counterexample with non-minimal length that is computed by the algorithm
that uses the following strategy for iterating over a set of states: always take state
si before state sj if i is smaller than j.

� A counterexample of minimal length.

4

