

Hand in until December 15th, 2021 23:59 via ILIAS Discussion: December 20th/21st, 2021

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 8

Exercise 1: Prefixes and Closure I

4 Points

The goal of this task is to get a better understanding of the relation between the set of finite prefixes of a property and the closure (which is defined using the prefixes).

Let P be any LT property. Prove the following claims:

- (a) $P \subset cl(P)$
- (b) pref(cl(P)) = pref(P)
- (c) cl(cl(P)) = cl(P)

Note: You can use (a) in the proof of (b), and you can use (a) and (b) in the proof of (c).

Exercise 2: Prefixes and Closure II

6 Points

The goal of this task is to get a better understanding of prefixes and closures by applying them to given properties.

Consider following properties over the set $AP = \{a, b\}$ of atomic propositions.

- (P_1) a holds exactly once.
- (P_2) Whenever a holds, b holds in the next step.
- (P_3) a holds only finitely many times.
- (P_4) a holds initially and infinitely often.

For each property P_i complete the following tasks:

- (a) Formalize P_i as a set of traces using set comprehension.
- (b) Give the set of prefixes using set comprehension, i.e. $pref(P_i)$.
- (c) Provide its closure using set comprehension, i.e. $cl(P_i)$.

Exercise 3: Safety Properties

6 Points

The goal of this task is to learn how to recognize safety properties and invariants. Consider following properties over the set $AP = \{a, b\}$ of atomic propositions.

•
$$P_1 = \{A_0 A_1 A_2 \dots \mid \neg \exists i. \ a \in A_i\}$$

(a never holds)

- $P_2 = \{A_0 A_1 A_2 \dots \mid \forall i. \ (a \in A_i \to \exists j. \ (i \leq j \land b \in A_j))\}$ (every a should eventually be followed by b)
- $P_3 = \{A_0 A_1 A_2 \dots \mid \forall i. (b \in A_i \to a \in A_i)\}$ (every time b holds, a also holds)
- $P_4 = \{A_0 A_1 A_2 \dots \mid \forall i. \ (b \in A_i \to \forall j. \ (i \neq j \to b \notin A_j))\}$ (b holds at most once)

For each property P_i complete the following tasks:

- (a) Determine if P_i is an invariant. In that case provide the invariant condition.
- (b) Determine if P_i is a safety property. In that case give the set of all bad prefixes. Otherwise give a counterexample, i.e. a trace $\sigma \in (2^{AP})^{\omega} \setminus P_i$ such that σ does not have a bad prefix.

For example, the bad prefixes of "always a" can be given as

$$BadPref_{always\ a} = \{A_0A_1 \dots A_n \mid \exists i \in \{0, \dots, n\} . a \notin A_i\}$$