Exercise 1: LTL Properties

Given the following LTL properties over $AP = \{a, b, c\}$:

$\varphi_1 = a \land \Box b$

$\varphi_2 = a \lor b$

$\varphi_3 = \neg(a \lor \Box b)$

$\varphi_4 = (\Diamond c) \lor \Box a$

$\varphi_5 = \Diamond \Box a$

$\varphi_6 = \Box \Diamond c$

For each of the LTL properties φ_i, complete the following tasks:

(a) Give a trace $\tau \in (2^{AP})^\omega$ that satisfies φ_i.

(b) Give a trace $\tau \in (2^{AP})^\omega$ that violates φ_i.

(c) State whether or not the transition system below satisfies φ_i.

(d) Formalize $\text{Words}(\varphi_i)$ (i.e. the set of all traces satisfying φ_i) using set comprehension.

For example for $\varphi = \Diamond a$ we can formalize $\text{Words}(\varphi) = \{A_0A_1 \cdots | \exists i. a \in A_i\}$.

Exercise 2: Stating properties in LTL

Suppose we have two users, Betsy and Peter, and a single printer device. Both users perform several tasks, and every now and then they want to print their results on the printer. Since there is only a single printer, only one user can print a job at a time.

Suppose we have the following atomic propositions for Peter at our disposal:

Peter.request indicates that Peter requests usage of the printer.

Peter.use indicates that Peter uses the printer.

Peter.release indicates that Peter releases the printer.

For Betsy, analogous predicates are defined. Specify in LTL the following properties:
(a) Mutual exclusion, i.e., only one user at a time can use the printer.

(b) Finite time of usage, i.e., a user can print only for a finite amount of time.

(c) Absence of individual starvation, i.e., if a user wants to print something, the user is eventually able to do so.

(d) **Bonus:** Absence of blocking, i.e., if a user requests access to the printer, the user does not request forever.

(e) **Bonus:** Alternating access, i.e., users must strictly alternate in printing.