

Prof. Dr. Andreas Podelski Dominik Klumpp Elisabeth Henkel

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 8

Exercise 1: Prefixes and Closure I

4 Points

6 Points

The goal of this task is to get a better understanding of the relation between the set of finite prefixes of a property and the closure (which is defined using the prefixes).

Let P be any LT property. Prove the following claims:

- (a) $P \subseteq cl(P)$
- (b) pref(cl(P)) = pref(P)
- (c) cl(cl(P)) = cl(P)

Note: You can use claim (a) in the proof of claim (b), and you can use claims (a) and (b) in the proof of claim (c).

Exercise 2: Prefixes and Closure II

The goal of this task is to get a better understanding of prefixes and closures by applying them to given properties.

Consider following properties over the set $AP = \{a, b\}$ of atomic propositions.

- (P_1) a holds exactly once.
- (P_2) Whenever *a* holds, *b* holds in the next step.
- (P_3) a holds only finitely many times.
- (P_4) a holds initially and infinitely often.

For each property P_i complete the following tasks:

- (a) Formalize P_i as a set of traces using set comprehension.
- (b) Give the set of prefixes using set comprehension, i.e. $pref(P_i)$.
- (c) Provide its closure using set comprehension, i.e. $cl(P_i)$.

Exercise 3: Safety & Liveness Properties

12 Points

The goal of this task is to learn how to recognize invariants, safety and liveness properties, and to learn how one can show that a property belongs to one of these three classes. Consider following properties over the set $AP = \{a, b\}$ of atomic propositions.

- $P_1 = \{A_0 A_1 A_2 \dots \mid \neg \exists i. a \in A_i\}$ (a never holds)
- $P_2 = \{A_0 A_1 A_2 \dots \mid \forall i. \ (a \in A_i \to \exists j. \ (i \le j \land b \in A_j))\}$ (every *a* should eventually be followed by *b*)
- $P_3 = \{A_0 A_1 A_2 \dots | \forall i. (b \in A_i \to a \in A_i)\}$ (every time b holds, a also holds)
- $P_4 = \{A_0 A_1 A_2 \dots | \forall i. (b \in A_i \rightarrow \forall j. (i \neq j \rightarrow b \notin A_j))\}$ (b holds at most once)

For each property P_i complete the following tasks:

(a) Determine if P_i is an invariant. In that case, provide the invariant condition. Otherwise give a set of atomic propositions A and two traces σ_1, σ_2 such that σ_1 satisfies P_i, σ_2 does not satisfy P_i , and A appears in both traces.

Example: The property "in the first step, a holds" is not an invariant. We can choose $\sigma_1 = \{a\}^{\omega}$ and $\sigma_2 = \emptyset\{a\}^{\omega}$, both of which contain the set $A = \{a\}$.

(b) Determine if P_i is a safety property. In that case, give the set of all bad prefixes. Otherwise give a counterexample, i.e. a trace $\sigma \in (2^{AP})^{\omega} \setminus P_i$ such that σ does not have a bad prefix.

Example: The property "always a" is a safety property, and its bad prefixes are

$$BadPref_{alwavs a} = \{A_0A_1 \dots A_n \mid \exists i \in \{0, \dots, n\} . a \notin A_i\}$$

(c) Determine if P_i is a liveness property. In that case, show how any prefix $A_0A_1 \ldots A_n$ can be extended to an infinite trace that satisfies P_i . Otherwise give one bad prefix of the property.

Example: The property "a holds infinitely often" is a liveness property, and any finite trace prefix $A_0A_1 \ldots A_n$ can be extended to an infinite trace σ that satisfies the property by setting $\sigma = A_0A_1 \ldots A_n$ $\{a\}^{\omega}$.