Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 8

Exercise 1: Prefixes and Closure I

4 Points
The goal of this task is to get a better understanding of the relation between the set of finite prefixes of a property and the closure (which is defined using the prefixes).

Let P be any LT property. Prove the following claims:
(a) $P \subseteq \operatorname{cl}(P)$
(b) $\operatorname{pref}(c l(P))=\operatorname{pref}(P)$
(c) $\operatorname{cl}(c l(P))=\operatorname{cl}(P)$

Note: You can use claim (a) in the proof of claim (b), and you can use claims (a) and (b) in the proof of claim (c).

Exercise 2: Prefixes and Closure II

6 Points
The goal of this task is to get a better understanding of prefixes and closures by applying them to given properties.

Consider following properties over the set $A P=\{a, b\}$ of atomic propositions.
$\left(P_{1}\right)$ a holds exactly once.
$\left(P_{2}\right)$ Whenever a holds, b holds in the next step.
$\left(P_{3}\right) a$ holds only finitely many times.
$\left(P_{4}\right) a$ holds initially and infinitely often.
For each property P_{i} complete the following tasks:
(a) Formalize P_{i} as a set of traces using set comprehension.
(b) Give the set of prefixes using set comprehension, i.e. $\operatorname{pref}\left(P_{i}\right)$.
(c) Provide its closure using set comprehension, i.e. $\operatorname{cl}\left(P_{i}\right)$.

Exercise 3: Safety \& Liveness Properties

The goal of this task is to learn how to recognize invariants, safety and liveness properties, and to learn how one can show that a property belongs to one of these three classes.
Consider following properties over the set $A P=\{a, b\}$ of atomic propositions.

- $P_{1}=\left\{A_{0} A_{1} A_{2} \ldots \mid \neg \exists i . a \in A_{i}\right\}$
(a never holds)
- $P_{2}=\left\{A_{0} A_{1} A_{2} \ldots \mid \forall i .\left(a \in A_{i} \rightarrow \exists j .\left(i \leq j \wedge b \in A_{j}\right)\right)\right\}$ (every a should eventually be followed by b)
- $P_{3}=\left\{A_{0} A_{1} A_{2} \ldots \mid \forall i .\left(b \in A_{i} \rightarrow a \in A_{i}\right)\right\}$ (every time b holds, a also holds)
- $P_{4}=\left\{A_{0} A_{1} A_{2} \ldots \mid \forall i .\left(b \in A_{i} \rightarrow \forall j .\left(i \neq j \rightarrow b \notin A_{j}\right)\right)\right\}$ (b holds at most once)

For each property P_{i} complete the following tasks:
(a) Determine if P_{i} is an invariant. In that case, provide the invariant condition. Otherwise give a set of atomic propositions A and two traces σ_{1}, σ_{2} such that σ_{1} satisfies P_{i}, σ_{2} does not satisfy P_{i}, and A appears in both traces.
Example: The property "in the first step, a holds" is not an invariant. We can choose $\sigma_{1}=\{a\}^{\omega}$ and $\sigma_{2}=\emptyset\{a\}^{\omega}$, both of which contain the set $A=\{a\}$.
(b) Determine if P_{i} is a safety property. In that case, give the set of all bad prefixes. Otherwise give a counterexample, i.e. a trace $\sigma \in\left(2^{A P}\right)^{\omega} \backslash P_{i}$ such that σ does not have a bad prefix.
Example: The property "always a " is a safety property, and its bad prefixes are

$$
\text { BadPref }_{\text {always } a}=\left\{A_{0} A_{1} \ldots A_{n} \mid \exists i \in\{0, \ldots, n\} . a \notin A_{i}\right\}
$$

(c) Determine if P_{i} is a liveness property. In that case, show how any prefix $A_{0} A_{1} \ldots A_{n}$ can be extended to an infinite trace that satisfies P_{i}. Otherwise give one bad prefix of the property.
Example: The property " a holds infinitely often" is a liveness property, and any finite trace prefix $A_{0} A_{1} \ldots A_{n}$ can be extended to an infinite trace σ that satisfies the property by setting $\sigma=A_{0} A_{1} \ldots A_{n}\{a\}^{\omega}$.

