This exercise sheet has one regular task concerning invariants. The remaining tasks are bonus exercises to recap some of the important concepts introduced earlier in the lecture. If you have some time during or after the break, you can use this sheet to practice – and to catch up with the points if needed.

Exercise 1: Invariants
8 Points

This goal of this task is to understand how one can show that a property is not an invariant.

As announced on ILIAS, exercise 3 (a) on sheet 8 had a flaw: The intention was to show that a property is *not* an invariant, but the criterion in the exercise was too weak.

In this exercise, we discuss a more suitable criterion to show a property is not an invariant.

(a) Let AP be a set of atomic propositions. Prove the following proposition:

Proposition: Let $E \subseteq (2^{AP})^\omega$ be an LT property. E is not an invariant if and only if there exists a trace $\sigma = A_0A_1 \ldots$ such that $\sigma \notin E$, but for every $i \in \mathbb{N}_0$, the set A_i also occurs in some trace $\pi_i \in E$.

In your proof, you can assume that for any set $M = \{A_0, A_1, \ldots, A_n\}$ of sets of atomic propositions, there exists a propositional formula Φ such that $A \in M$ if and only if $A \models \Phi$, for all sets $A \in 2^{AP}$.

(b) Let $AP = \{a, b\}$. Consider the property “every a is immediately followed by b”:

$$E_1 = \{ A_0A_1 \ldots \mid \forall i \in \mathbb{N}_0 . a \in A_i \rightarrow b \in A_{i+1} \}$$

Show that E_1 is not an invariant, by giving a trace $\sigma = A_0A_1 \ldots \notin E_1$, such that every A_i also occurs in some trace π_i that satisfies E_1. For every distinct A_i, also give the trace π_i. (Since a trace only contains finitely many different A_i, you only need to give a finite number of traces.)

(c) Let $AP = \{a, b\}$. Consider the following property:

$$E_2 = \{ A_0A_1 \ldots \mid \forall i, j \in \mathbb{N}_0 . A_i = A_j \}$$

Show that E_2 is not an invariant, by giving a trace $\sigma = A_0A_1 \ldots \notin E_2$, such that every A_i also occurs in some trace π_i that satisfies E_2. For every distinct A_i, also give the trace π_i.

(d) Let $AP = \{a, b, c\}$. Consider the property “a holds at least twice”:

$$E_3 = \{ A_0A_1 \ldots \mid |\{i \in \mathbb{N}_0 \mid a \in A_i\}| \geq 2 \}$$

Show that E_3 is not an invariant. You may either use the criterion from (a) again, or find another way to show that E_3 is not an invariant.
Exercise 2*: LT Properties

8 Bonus Points

The goal of this task is to learn to identify the different types of LT properties.

Consider the following LT properties with $AP = \{a, b\}$.

(P_1) Always (at any point of time) a or b holds.

(P_2) Either a holds exactly once, or b never holds.

(P_3) If a holds, then b will never hold in the next step.

(P_4) Every time a holds there will be eventually a point of time where b holds.

(P_5) The atomic propositions a and b never hold at the same time.

(P_6) If a holds infinitely often, then b holds infinitely often.

(P_7) There are only finitely many points of time where a holds.

(P_8) True

For each property P_i complete the following tasks:

(a) Formalize P_i using set notation.

(b) Determine if P_i is an invariant. Explain why or why not.

(c) Determine if P_i is a safety property. Explain why or why not.

(d) Determine if P_i is a liveness property. Explain why or why not.

Exercise 3*: Mutual Exclusion

8 Bonus Points

Consider the following locking protocol. The initial value of the variable x is 0.

\[
\begin{array}{c}
\text{ncrit}_1 \quad \downarrow \quad x==0 \\
\text{crit}_1 \quad \downarrow \quad x==1 \\
\text{wait}_1 \quad \downarrow \quad x==2 \\
\text{wait}_2 \quad \downarrow \\
\text{ncrit}_2 \quad \downarrow \\
\text{crit}_2 \quad \downarrow \quad x==2 \\
\end{array}
\]

P_1

P_2

Note: There is a difference between $x:=1$ and $x==1$. The edge labeled with $x:=1$ can always be taken (as there is no guard) and it modifies the value of x. On the other hand, the edge with $x==1$ can only be taken when x has the value 1, and it does not modify the value of x.

2
(a) Draw the program graph $P_1 \parallel| P_2$, i.e. the program graph for the interleaving of P_1 and P_2.

(b) Draw the reachable part of the transition system $T_{P_1 \parallel| P_2}$ for the interleaving of the programs. Use the atomic propositions $\{\text{crit}_1, \text{crit}_2\}$ that are satisfied, whenever process 1 respectively process 2 are in their critical section.

(c) Does the protocol satisfy the mutual exclusion property? Explain your answer in sufficient detail.

(d) Is this a reasonable protocol for parallel programs? Explain your answer in sufficient detail.

Exercise 4*: Mutual Exclusion without Request 6 Bonus Points

The goal of this exercise is to help you understand in detail the SOS-rules for parallel compositions.

The transition systems below describe a mutual-exclusion protocol with an arbiter. In contrast to the system discussed in the lecture, we omit the request action.

\[
\begin{align*}
TS_1 & \quad \text{Arbiter} \quad TS_2 \\
\text{idle} & \xrightarrow{\text{enter}} \text{crit} & \text{unlock} & \xrightarrow{\text{enter}} \text{lock} & \text{idle} & \xrightarrow{\text{enter}} \text{exit}
\end{align*}
\]

(a) Draw the transition system for the pure interleaving $TS_1 \parallel| TS_2$. There must be no synchronization between the two transition systems.

For every transition in the interleaving, justify why it must exist using one of the two SOS-rules for pure interleaving.

Example: The interleaving must contain the transition $\langle \text{idle}, \text{idle} \rangle \xrightarrow{\text{enter}} \langle \text{crit}, \text{idle} \rangle$ due to the SOS-rule

\[
\frac{\text{idle} \xrightarrow{\text{enter}} \text{crit}}{\langle \text{idle}, \text{idle} \rangle \xrightarrow{\text{enter}} \langle \text{crit}, \text{idle} \rangle}
\]

where \rightarrow_1 is the transition relation for TS_1. This is an instance of the first of the two SOS-rules,

\[
\frac{s_1 \xrightarrow{\alpha} s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle}
\]

where we set $s_1 = \text{idle}$, $\alpha = \text{enter}$, $s'_1 = \text{crit}$ and $s_2 = \text{idle}$.

(b) Draw the transition system for the parallel composition $(TS_1 \parallel| TS_2) \parallel Arbiter$ of the transition system from (a) with the arbiter. The transition systems must synchronize ("handshake") on the actions $\{\text{enter}, \text{exit}\}$.

For every transition in the composition, justify why it must exist using one of the three SOS-rules for the synchronization operator.
Exercise 5*: Hardware Circuit
Consider the following sequential hardware circuit.

Provide the labeled transition system of this hardware circuit (i.e., states are labeled by sets of atomic propositions, transitions are not labeled). The states are the evaluations of the input x and the register r. The transitions represent the stepwise behavior of the circuit. The values of the input x change nondeterministically. The atomic propositions \{X, Y, R\} stand for $x = 1$, $y = 1$ and $r = 1$, respectively. Initially the register r has the value 0 (false).

For your reference: $\bigcirc = \text{AND gate}$, $\bigtriangleup = \text{OR gate}$, $\rhd = \text{NOT gate}$