
Prof. Dr. Andreas Podelski
Dominik Klumpp
Elisabeth Henkel

Hand in until January 11th, 2023
23:59 via ILIAS

Discussion: January 16th/17th, 2023

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 10

This exercise sheet has one regular task concerning invariants. The remaining
tasks are bonus exercises to recap some of the important concepts introduced
earlier in the lecture. If you have some time during or after the break, you
can use this sheet to practice – and to catch up with the points if needed.

Exercise 1: Invariants 8 Points
This goal of this task is to understand how one can show that a property is not an invariant.

As announced on ILIAS, exercise 3 (a) on sheet 8 had a flaw: The intention was to show
that a property is not an invariant, but the criterion in the exercise was too weak.

In this exercise, we discuss a more suitable criterion to show a property is not an invariant.

(a) Let AP be a set of atomic propositions. Prove the following proposition:

Proposition: Let E ⊆ (2AP)ω be an LT property. E is not an invariant if and
only if there exists a trace σ = A0A1 . . . such that σ /∈ E, but for every i ∈ N0, the
set Ai also occurs in some trace πi ∈ E.

In your proof, you can assume that for any set M = {A0, A1, . . . , An} of sets of
atomic propositions, there exists a propositional formula Φ such that A ∈ M if and
only if A |= Φ, for all sets A ∈ 2AP .

(b) Let AP = {a, b}. Consider the property “every a is immediately followed by b”:

E1 = {A0A1 . . . | ∀i ∈ N0 . a ∈ Ai → b ∈ Ai+1 }

Show that E1 is not an invariant, by giving a trace σ = A0A1 . . . /∈ E1, such that
every Ai also occurs in some trace πi that satisfies E1. For every distinct Ai, also
give the trace πi. (Since a trace only contains finitely many different Ai, you only
need to give a finite number of traces.)

(c) Let AP = {a, b}. Consider the following property:

E2 = {A0A1 . . . | ∀i, j ∈ N0 . Ai = Aj }

Show that E2 is not an invariant, by giving a trace σ = A0A1 . . . /∈ E2, such that
every Ai also occurs in some trace πi that satisfies E2. For every distinct Ai, also
give the trace πi.

(d) Let AP = {a, b, c}. Consider the property “a holds at least twice”:

E3 = {A0A1 . . . | |{i ∈ N0 | a ∈ Ai}| ≥ 2 }

Show that E3 is not an invariant. You may either use the criterion from (a) again,
or find another way to show that E3 is not an invariant.

1

Exercise 2⋆: LT Properties 8 Bonus Points
The goal of this task is to learn to identify the different types of LT properties.

Consider the following LT properties with AP = {a, b}.

(P1) Always (at any point of time) a or b holds.

(P2) Either a holds exactly once, or b never holds.

(P3) If a holds, then b will never hold in the next step.

(P4) Every time a holds there will be eventually a point of time where b holds.

(P5) The atomic propositions a and b never hold at the same time.

(P6) If a holds infinitely often, then b holds infinitely often.

(P7) There are only finitely many points of time where a holds.

(P8) True

For each property Pi complete the following tasks:

(a) Formalize Pi using set notation.

(b) Determine if Pi is an invariant. Explain why or why not.

(c) Determine if Pi is a safety property. Explain why or why not.

(d) Determine if Pi is a liveness property. Explain why or why not.

Exercise 3⋆: Mutual Exclusion 8 Bonus Points
Consider the following locking protocol. The initial value of the variable x is 0.

ncrit1

wait1

crit1

x==0

x:=2

x==1

P1

ncrit2

wait2

crit2

x==0

x:=1

x==2

P2

Note: There is a difference between x:=1 and x==1. The edge labeled with x:=1 can
always be taken (as there is no guard) and it modifies the value of x. On the other hand,
the edge with x==1 can only be taken when x has the value 1, and it does not modify the
value of x.

2

(a) Draw the program graph P1 ∥|P2, i.e. the program graph for the interleaving of P1

and P2.

(b) Draw the reachable part of the transition system TP1∥|P2 for the interleaving of the
programs. Use the atomic propositions {crit1, crit2} that are satisfied, whenever
process 1 respectively process 2 are in their critical section.

(c) Does the protocol satisfy the mutual exclusion property? Explain your answer in
sufficient detail.

(d) Is this a reasonable protocol for parallel programs? Explain your answer in sufficient
detail.

Exercise 4⋆: Mutual Exclusion without Request 6 Bonus Points
The goal of this exercise is to help you understand in detail the SOS-rules for parallel composi-

tions.

The transition systems below describe a mutual-exclusion protocol with an arbiter. In
contrast to the system discussed in the lecture, we omit the request action.

idle

crit

enter exit

TS 1

unlock

lock

enter exit

Arbiter

idle

crit

enter exit

TS 2

(a) Draw the transition system for the pure interleaving TS 1 ∥|TS 2. There must be no
synchronization between the two transition systems.

For every transition in the interleaving, justify why it must exist using one of the
two SOS-rules for pure interleaving.

Example: The interleaving must contain the transition ⟨idle, idle⟩ enter−−−→ ⟨crit, idle⟩
due to the SOS-rule

idle
enter−−−→1 crit

⟨idle, idle⟩ enter−−−→ ⟨crit, idle⟩
where →1 is the transition relation for TS 1. This is an instance of the first of the
two SOS-rules,

s1
α−→1 s

′
1

⟨s1, s2⟩
α−→ ⟨s′1, s2⟩

where we set s1 = idle, α = enter, s′1 = crit and s2 = idle.

(b) Draw the transition system for the parallel composition (TS 1 ∥| TS 2) ∥ Arbiter
of the transition system from (a) with the arbiter. The transition systems must
synchronize (“handshake”) on the actions {enter, exit}.
For every transition in the composition, justify why it must exist using one of the
three SOS-rules for the synchronization operator.

3

Exercise 5⋆: Hardware Circuit 4 Bonus Points
Consider the following sequential hardware circuit.

x

r

y

Provide the labeled transition system of this hardware circuit (i.e., states are labeled by
sets of atomic propositions, transitions are not labeled). The states are the evaluations
of the input x and the register r. The transitions represent the stepwise behavior of the
circuit. The values of the input x change nondeterministically. The atomic propositions
{X, Y,R} stand for x = 1, y = 1 and r = 1, respectively. Initially the register r has the
value 0 (false).

For your reference: = AND gate, = OR gate, = NOT gate

4

